
Operating Systems Module: CO-562
Constructor University Date: 2023-09-22
Dr. Jürgen Schönwälder Due: 2023-09-29

Problem Sheet #3

Problem 3.1: readers / writers problem (1+1+1 = 3 points)

Below are three incorrect solutions of the readers-writers problem. Explain why the solutions works
or in which situations the solutions fail to work correctly. The solutions use the following common
definitions:

shared object data;

shared int readcount = 0;

semaphore mutex = 1, writer = 1;

a) void reader() void writer()

{ {

down(&mutex); down(&writer);

readcount = readcount + 1; write_shared_object(&data);

if (readcount == 1) down(&writer); up(&writer);

up(&mutex); }

read_shared_object(&data);

down(&mutex);

readcount = readcount - 1;

up(&mutex);

if (readcount == 0) up(&writer);

}

b) void reader() void writer()

{ {

down(&mutex); down(&writer);

readcount = readcount + 1; write_shared_object(&data);

if (readcount == 1) down(&writer); up(&writer);

up(&mutex); }

read_shared_object(&data);

down(&mutex);

readcount = readcount - 1;

if (readcount == 0) {

up(&mutex);

up(&writer);

} else {

up(&mutex);

}

}

c) void reader() void writer()

{ {

down(&mutex); down(&writer);

readcount = readcount + 1; down(&mutex);

if (readcount == 1) down(&writer); write_shared_object(&data);

up(&mutex); up(&mutex);

read_shared_object(&data); up(&writer);

down(&mutex); }

readcount = readcount - 1;

if (readcount == 0) up(&writer);

up(&mutex);

}



Problem 3.2: perfect numbers (multi-threading) (2+3+2 = 7 points)

A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the
number itself. For example, 6 has the positive divisors { 1, 2, 3 } and 1 + 2 + 3 = 6.

Write a C program called perfect that finds perfect numbers in a range for numbers. The default
number range is [1, 10000]. The program accepts the -s option to set the lower bound and the
-e option to set the higher bound. Hence, the invocation perfect -s 100 -e 1000 will search for
perfect numbers in the range [100, 1000].

The following function can be used to test whether a given number is a perfect number:

1 #include <stdint.h>

2

3 static int

4 is_perfect(uint64_t num)

5 {

6 uint64_t i, sum;

7

8 if (num < 2) {

9 return 0;

10 }

11

12 for (i = 2, sum = 1; i*i <= num; i++) {

13 if (num % i == 0) {

14 sum += (i*i == num) ? i : i + num / i;

15 }

16 }

17

18 return (sum == num);

19 }

a) Write a program that searches for perfect numbers in a range of numbers. Your program must
support the -s and -e options to define non-default search intervals.

./perfect -s 100 -e 10000

496

8128

b) Implement an option -t that can be used to define how many concurrent threads should be
used to execute the search. If the -t option is not present, then a single thread is used to carry
out the search. For debugging purposes, implement an option -v that writes trace information
to the standard error. Below is an invocation with two threads and a verbose trace.

./perfect -t 2 -v

perfect: t0 searching [1,5000]

perfect: t1 searching [5001,10000]

6

28

496

8128

perfect: t0 finishing

perfect: t1 finishing

c) Determine how the -t option impacts the execution time. Pick a search interval that is a rea-
sonable load for your computer hardware and then increase the threading level and determine
how the execution time changes. Produce a plot presenting the measurements you have ob-
tained and discuss the results.


