Problem Sheet \#6

Problem 6.1: safe states
A system has $n=5$ processes, $m=5$ resource types, and the number of resources for each resource type is given by $t=(6,17,9,9,7)$. The system is in the following state:

$$
M=\left[\begin{array}{lllll}
2 & 5 & 3 & 3 & 2 \\
3 & 5 & 8 & 9 & 1 \\
4 & 9 & 4 & 9 & 2 \\
6 & 1 & 4 & 5 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right] \quad A=\left[\begin{array}{lllll}
1 & 5 & 3 & 1 & 1 \\
0 & 2 & 1 & 1 & 1 \\
0 & 7 & 1 & 2 & 1 \\
3 & 1 & 1 & 1 & 0 \\
1 & 2 & 3 & 2 & 1
\end{array}\right]
$$

Is the system in a safe state? Provide a calculation to justify your answer.
Problem 6.2: deadlock detection
A system has $n=3$ processes, $m=4$ resource types, and the number of resources for each resource type is given by $t=(3,2,3,1)$. The system is in the following state:

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] \quad N=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

a) Draw the corresponding resource allocation graph.
b) Is the system deadlocked? Provide a calculation to justify your answer.

Problem 6.3: scheduling strategies
A computer system with a single CPU has to execute six processes A, \ldots, F. The arrival times and the execution times of the processes are given by the following table.

process	arrival time	execution time
A	0	9
B	4	8
C	6	2
D	8	5
E	13	4
F	15	1

a) Draw the schedule for the scheduling strategies first-come first-served (FCFS), shortest processing time first (SPTF), longest processing time first (LPTF), and round robin (RR) with a time slice of 1 time unit. Assume that arrivals happen before a scheduling point and that new processes are added at the end of the run queue.
b) For each schedule, calculate the average turnaround time \bar{t} and the average waiting time \bar{w}.

