
Operating Systems Module: CO-562
Constructor University Date: 2023-10-27
Dr. Jürgen Schönwälder Due: 2023-11-03

Problem Sheet #8

Problem 8.1: address spaces in a paging system (1+1+1 = 3 points)

Consider a operating system that uses paging for memory management with a page size of 2048 B.
The logical address space of processes is limited to a maximum of 16 pages. The physical memory
has a size of 256 KiB.

a) How many frames has the physical memory?

b) How many bits has an address in the logical address space and how many bits has an address
in the physical address space?

c) How many bits are used for the page number and how many bits are used for the offset within
a page?

Problem 8.2: paging and page tables (1+1+1 = 3 points)

Consider a tiny computer system with a physical memory space of 16 frames. Each 12-bit logical
address uses 4 bits for the page number and 8 bits for the offset within a page. There are two
processes P1 and P2 with the logical address spaces shown below.

Process P1

Page Logical Addresses Segment

p1,0 0x000-0x0FF text
p1,1 0x100-0x1FF text
p1,2 0x200-0x2FF data
p1,5 0x500-0x5FF heap
p1,6 0x600-0x6FF stack
p1,8 0x800-0x8FF stack

Process P2

Page Logical Addresses Segment

p2,0 0x000-0x0FF text
p2,1 0x100-0x1FF text
p2,4 0x400-0x4FF data
p2,5 0x500-0x5FF data
p2,6 0x600-0x6FF heap
p2,8 0x800-0x8FF stack

Some pages reside in physical memory as shown in the table below. The notation pi,n refers to
page n of the logical address space of process Pi. The OS pages are used by the operating
system, unused frames are marked with a dash.

Frame Physical Addresses Loaded Page

0 0x000-0x0FF OS
1 0x100-0x1FF p2,5
2 0x200-0x2FF -
3 0x300-0x3FF p1,8
4 0x400-0x4FF p2,4
5 0x500-0x5FF -
6 0x600-0x6FF p1,1
7 0x700-0x7FF -
8 0x800-0x8FF p1,0
9 0x900-0x9FF p2,0
10 0xA00-0xAFF -
11 0xB00-0xBFF p1,6
12 0xC00-0xCFF p2,1
13 0xD00-0xDFF -
14 0xE00-0xEFF -
15 0xF00-0xFFF -



a) Write down the page tables for both processes P1 and P2. Each page table entry maintains
the following additional bits: r = read access, w = write access, x = execute access, d = dirty, v
= valid, commonly written in the form rwxdv if all bits are set or as rw--v if only the r, w, and v
bits are set. Assume that all writable pages are dirty.

b) The CPU executes process P1 and the machine instructions modify a global variable and a
dynamically allocated string. A context switch occurs and the CPU executes process P2, which
performs a function call that allocates and initializes 16 bytes on the heap.

Write down the content of the page tables after all write operations and initializations have
been performed. If a page fault occurs use the first free physical frame to load the page.

c) The processes P1 and P2 establish a shared memory page to exchange data. The shared
page appears as p1,4 in the logical address space of P1 and as p2,2 in the logical address
space of P2. Show the resulting use of the physical memory frames (i.e., update the table
shown above).

Problem 8.3: memory mapped word count (4 points)

Write a program mwc that prints the number of lines, words, and bytes contained in each input file
mention in the command arguments, or standard input (if no file is specified). A word is a non-
zero-length sequence of printable characters delimited by white space (use isspace() defined in
ctype.h). Your program should use memory mapping for regular files and it should fallback to
regular I/O for all other files or data received via the standard input. Test whether you program is
running faster than the wc program installed on your system.

The original wc also prints a summary line if multiple files are listed on the command line. This is
not required to implement, but you may choose to do so in order to stay aligned with the original
wc program.

Here are some example executions:

$ ./build/mwc ./mwc.c

175 477 3478 ./mwc.c

$ ./build/mwc < ./mwc.c

175 477 3478

$ ./build/mwc < /dev/null

0 0 0

$ ./build/mwc ./mwc.c ./mwc.c

175 477 3478 ./mwc.c

175 477 3478 ./mwc.c

350 954 6956 total


