Problem Sheet #6

Problem 6.1: safe states

A system has n = 5 processes, m = 5 resource types, and the number of resources for each resource type is given by t = (6, 17, 9, 10, 7). The system is in the following state:

	2	5	3	3	2		0	5	3	1	1]
	3	5	8	10	1						1
M =	4	12	4	9	2	A =	0	7	1	2	1
				5			3	1	1	1	0
	1	2	3	4	5		1	2	3	2	1

Is the system in a safe state? Provide a calculation to justify your answer.

Problem 6.2: deadlock detection

A system has n = 3 processes, m = 4 resource types, and the number of resources for each resource type is given by t = (2, 2, 1, 3). The system is in the following state:

 $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

a) Draw the corresponding resource allocation graph.

b) Is the system deadlocked? Provide a calculation to justify your answer.

A

В

C

processes are added at the end of the run queue.

Problem 6.3: scheduling strategies

A computer system with a single CPU has to execute n = 6 processes A, \ldots, F . The arrival times and the execution times of the processes are given by the following table.

process arrival time execution time

7

5

9

0

3

5

	D	8	3	
		10	1	
	F	12	2	
				—
a) Draw the coh	adula for the cohodul	ina stratogios	first some first s	erved (FCFS), shortest pro-
,		0 0		and round robin (RR) with a
0	(<i>),</i> O		(),	heduling point and that new

b) For each schedule, calculate the average turnaround time \bar{t} and the average waiting time \bar{w} .

Module: CO-562 Date: 2024-10-11 Due: 2024-10-18

(3 points)

(4+2 = 6 points)

(1+2 = 3 points)