
Operating Systems Module: CO-562
Constructor University Date: 2024-11-01
Dr. Jürgen Schönwälder Due: 2024-11-08

Problem Sheet #9

Problem 9.1: computer science multiple-choice quiz (3+2+3+2 = 10 points)

Write a program that writes multiple choice questions to the standard output and then reads an-
swers from the standard input until the correct answer has been given or the number of attempts to
provide an answer has been exceeded. The game repeats until the user ends the standard input
(by pressing CTRL-D on Linux/MacOS or CTRL-Z on Windows). The game then shows the final
score.

$ ./quiz

Answer multiple choice questions about computer science.

You score points for each correctly answered question.

If you need multiple attempts to answer a question, the

points you score for a correct answer go down.

This mobile OS held the largest market share in 2012.

[a] Symbian

[b] Android

[c] BlackBerry

[d] iOS

(8pt) > d

Congratulation, answer [d] is correct. Your current score is 8/8 points.

The programming language "Swift" was created to replace what other programming language?

[a] Ruby

[b] C#

[c] Objective-C

[d] C++

(8pt) > c

Congratulation, answer [c] is correct. Your current score is 12/16 points.

What is the name given to layer 4 of the Open Systems Interconnection (ISO) model?

[a] Session

[b] Transport

[c] Data link

[d] Network

(8pt) > d

Answer [d] is wrong, try again.

(4pt) > a

Answer [a] is wrong, try again.

(2pt) > b

Congratulation, answer [b] is correct. Your current score is 14/24 points.

What does GHz stand for?

[a] Gigahatz

[b] Gigahotz

[c] Gigahetz

[d] Gigahertz



(8pt) > ^D

Your current score is 14/24 points.

Thanks for playing today.

Your final score is 14/24 points.

Your program obtains the questions from a web service. Since you do not want to implement a
network protocol yourself (yet), you simply run a tool like curl to fetch questions and you parse
the output produced by curl. An example invocation of curl in your shell may look like this:

$ curl -s 'https://opentdb.com/api.php?amount=1&category=18&type=multiple'

{

"response_code": 0,

"results": [

{

"category": "Science: Computers",

"type": "multiple",

"difficulty": "medium",

"question": "What was the name given to Android 4.3?",

"correct_answer": "Jelly Bean",

"incorrect_answers": [

"Lollipop",

"Nutella",

"Froyo"

]

}

]

}

The URL requests a single multiple-choice question from the computer science category 18. If the
request is successful, the curl program returns a JSON document, which includes the question,
the correct answer, as well as several wrong answers.

Further information how to structure your implementation is provided in the following header file:

/*

* quiz/quiz.h --

*/

#ifndef QUIZ_H

#define QUIZ_H

typedef struct {

unsigned n; /* current question number (starting at 1) */

unsigned score; /* current total score */

unsigned max; /* possible max score */

char *question; /* next question (dynamically allocated) */

char *answer; /* next answer (dynamically allocated) */

char *choices[4]; /* */

} quiz_t;

/*

* Fetch the content of the given url by running 'curl' as a child

* process and reading the response from a pipe. The response is

* returned as a malloc'ed string, or NULL if there was an error.

*

* Implement the fetch() function in a fetch.c module.

*/

extern char* fetch(char *url);



/*

* Parse a JSON encoded msg and fill the next question into the

* quiz_t. Use a JSON parsing library (e.g., jansson or json-c). The

* function returns 0 or -1 if there was a parsing error.

*

* Implement the parse() function in a parse.c module.

*/

extern int parse(quiz_t *quiz, char *msg);

/*

* Play one round of the quiz game by first fetching and parsing a

* quiz question and then interacting with the user. The function

* returns 0 or -1 if there was an error.

*

* Implement the play() function in a play.c module.

*/

extern int play(quiz_t *quiz);

#endif

a) Implement a function char* fetch(char *url) in the file fetch.c that opens a pipe to curl

running as a child process. The function returns the response obtained by curl.

Do not use popen() or system(). Do not use the libcurl C API.

b) Implement a function int parse(quiz t *quiz, char *msg) in the file parse.c that parses
the JSON input and adds the next question and the expected answer to the quiz data structure.
Consider to use a JSON parsing library such as jansson or json-c.

c) Implement a function int play(quiz t *quiz) in the file play.c that plays one iteration of the
game.

d) Implement a main program in the file quiz.c that plays the quiz in a loop until either the user
did end the standard input or the user pressed CTRL-C to interrupt the program.

Make sure that your program handles error situations and is robust regarding malicious inputs. It
is recommended that you test your program using valgrind, a tool that can identify a number of
programming errors.


