Operating Systems Module: CO-562
Constructor University Date: 2025-09-19
Dr. Jirgen Schonwalder Due: 2025-09-26

Problem Sheet #3

Problem 3.1: process creation using fork() (1+1 = 2 points)

Consider the following C program. Assume that all system calls succeed at runtime, that no other
processes are created during the execution of the program, and that process identifiers are allo-
cated sequentially.

#include <stdzo.h>
#include <unistd.h>

static int x = O;
int main(int argc, char *argvl[])

{
pid_t p = getpid();

© ® N o o A W N =

X++;

fork();

if (! fork()) {
if (fork()) {

X++;

)

I N SR
w N = O

-
TS

3

X++;

-
o

-
=

}

[
QJ

-
[

printf("pjd: x = %d\n", getpid() - p, x);
return O;

-
©

¥
=}

M
=
(-

Try to solve this question on paper and not by typing the code into your computer. During an exam,
you will have to answer questions like this on paper as well.

a) How many processes does the program create during its execution. Draw the process tree and
indicate the value of x on the edges whenever it changes in a process.

b) What is the output produced by the program?

Problem 3.2: reap all child processes (1 point)

Implement a function int reapall(void) which reaps all child processes of the calling process
and returns the number of processes that terminated normally, that is, by calling exit O or _exit (),
or by returning from main().

Problem 3.3: perfect numbers (multi-threading) (2+3+2 = 7 points)

A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the
number itself. For example, 6 has the positive divisors {1,2,3} and 1 + 2+ 3 = 6.

Write a C program called perfect that finds perfect numbers in a range for numbers. The default
number range is [1,10000]. The program accepts the -s option to set the lower bound and the
-e option to set the higher bound. Hence, the invocation perfect -s 100 -e 1000 will search for
perfect numbers in the range [100, 1000].

The following function can be used to test whether a given number is a perfect number:



10
11
12
13
14
15
16
17
18

19

a)

#include <stdint.h>

static int
is_perfect(uint64_t num)

{
uint64_t i, sum;
if (num < 2) {
return O;
}
for (i = 2, sum = 1; i*i <= num; i++) {
if (qum % i == 0) {
sum += (i*i == num) 7 i : i + num / 1i;
}
}
return (sum == num);
¥

Write a program that searches for perfect numbers in a range of numbers. Your program must
support the -s and -e options to define non-default search intervals.

./perfect -s 100 -e 10000
496
8128

Implement an option -t that can be used to define how many concurrent threads should be
used to execute the search. If the -t option is not present, then a single thread is used to carry
out the search. For debugging purposes, implement an option -v that writes trace information
to the standard error. Below is an invocation with two threads and a verbose trace.

./perfect -t 2 -v

perfect: t0 searching [1,5000]
perfect: tl searching [5001,10000]
6

28

496

8128

perfect: tO finishing

perfect: tl finishing

Determine how the -t option impacts the execution time. Pick a search interval that is a rea-
sonable load for your computer hardware and then increase the threading level and determine
how the execution time changes. Produce a plot presenting the measurements you have ob-
tained and discuss the results.



