
Operating Systems Module: CO-562
Constructor University Date: 2025-10-17
Dr. Jürgen Schönwälder Due: 2025-10-24

Problem Sheet #7

Problem 7.1: linking (2+1+1 = 4 points)

The following C source files are compiled separately into object files and afterwards linked with
other object files into an executable.

/* a.c */

include <stdio.h>

extern int x;

int y;

static void f(void)

{

static char z = 'Z';

puts("a.c: f()");

}

void g(void)

{

puts("a.c: g()");

f();

}

void h(void)

{

puts("a.c: h()");

g();

}

/* b.c */

include <stdio.h>

extern void h(void);

int x = 1;

static double y = 1;

static char z = 'A';

static void g(void)

{

puts("b.c: g()");

h();

}

void f(void)

{

puts("b.c: f()");

g();

}

a) Which symbols defined in the files a.c and b.c are

• internally defined symbols not accessible outside of the object file,

• references to externally defined symbols that must be resolved by the linker,

• weak linkable symbols defined in the object file, or

• strong linkable symbols defined in the object file?

Mark the corresponding cell in the following table (we ignore the puts symbol).

internal reference of weak strong
file symbol unlinkable external linkable linkable

symbol symbol symbol symbol

a.c x
a.c y
a.c f
a.c g
a.c h

b.c x
b.c y
b.c z
b.c f
b.c g

b) What will be printed to the standard output by the following main() function? Explain.

/* main.c */

extern void f(void);

int main(void)

{

f();

return 0;

}

c) What is name mangling and why do programming languages like C++ use name mangling?
Why do I sometimes need to use extern "C" {} in C++ header files?

Problem 7.2: memory allocation profiling using library interposition (2+4 = 6 points)

Write a dynamically loadable library memprof implementing wrapper functions for the standard
library functions malloc(), calloc(), realloc(), and free(). The goal is to write the amount of
data allocated and the value returned to the standard error. The standard error can be redirected
into a file so that the memory allocation trace can be further analyzed.

a) Write an implementation of the dynamically loadable library memprof. An example invocation
could look as follows:

$ LD_PRELOAD=$(pwd)/memprof.so date 2> date-memprof.csv

This shell command runs the program date with the memprof library preloaded, redirecting the
standard error output to the file date-memprof.csv.

The output format should be a comma separated values (csv) file with the first field holding
the function name, the second the allocation size (where applicable, for calloc() the total
allocated size), the third the argument pointer (in case of realloc() and free(), and the
fourth the result pointer (if any). Here is the start of an example csv file (including a header
line):

function,asize,aptr,rptr

malloc,5,,0x558429ff62a0

free,,0x558429ff62a0,

malloc,120,,0x558429ff62c0

malloc,12,,0x558429ff62a0

malloc,792,,0x558429ff6340

malloc,104,,0x558429ff6660

b) Use your memory profiler to measure the memory allocations of a Python interpreter printing
hello world:

$ echo "print('hello world')" | \
LD_PRELOAD=$(pwd)/memprof.so python3 2> python-memprof.csv

Analyze the collected information.

(a) What is the total amount of bytes allocated by malloc, calloc, realloc, and free calls
recorded?

(b) What is the minimum, mean, and maximum allocation size for each function?

(c) What are the 10 most frequently allocated sizes?

(d) Are there cases where malloc or calloc returned the same pointer, i.e., memory was
reused?

The command line tool miller may be convenient for data analysis. Include the miller com-
mands used to find the answers to the questions and your raw data file.

