
Secure and Dependable Systems

Jürgen Schönwälder

May 18, 2018

Abstract

This memo contains annotated slides for the course “Secure and Dependable Systems”. The
material is inspired by the course material of Florian Rabe’s course “Secure and Dependable Systems”
and many other sources that are referenced inline.

Contents

I Introduction 3

Motivation 4

Classic Computing Disasters 7

Dependability Concepts and Terminology 13

Dependability Metrics 26

II Software Engineering 31

General Aspects 32

Software Testing 38

Software Specification 45

Software Verification 57

III Concurrency and Distributed Algorithms 80

Concurrency Overview 81

Model of Distributed Algorithms 86

Events, Causality, Logical Clocks 95

Stable Properties and Snapshots 107

Fault Tolerance and Broadcasts 121

Communicating Sequential Processes 134

IV Cryptography 170

Cryptography Primer 171

1

Symmetric Encryption Algorithms and Block Ciphers 180

Asymmetric Encryption Algorithms 197

Cryptographic Hash Functions 202

Digital Signatures and Certificates 208

Key Management Schemes 217

V Secure Communication Protocols 226

Pretty Good Privacy 227

Transport Layer Security 235

Secure Shell 245

VI Information Hiding and Privacy 260

Steganography and Watermarks 261

Covert Channels 270

Anonymization Terminology 275

Mixes and Onion Routing 283

2

Part I

Introduction

The aim of this part is to motivate why security and depenability of computing systems are important
and to look into a recent security failure in order to understand complexities involved in building secure
and dependable systems.

This part also introduces the terminology and key concepts that are used by the dependability commu-
nity.

3

Motivation

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 18 / 295

4

Can we trust computers?

• How much do you trust (to function correctly)
• personal computer systems and mobile phones?
• cloud computing systems?
• planes, trains, cars, ships?
• navigation systems?
• communication networks (telephones, radios, tv)?
• power plants and power grids?
• banks and financial trading systems?
• online shopping and e-commerce systems?
• social networks and online information systems?
• information used by insurance companies?
• . . .

• Distinguish between what your intellect tells you to do and what you actually do.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 19 / 295

5

Importance of Security and Dependability

• Software development processes are often too focused on functional aspects and
user interface aspects (since this is what sells products).

• Aspects such as reliability, robustness against failures and attacks, long-term
availability of the software and data, integrity of data, protection of data against
unauthorized access, etc. are often not given enough consideration.

• Software failures can not only have significant financial consequences, they can also
lead to environmental damages or even losses of human lifes.

• Due to the complexity of computing systems, the consequences of faults in one
component are very difficult to estimate.

• Security and dependability aspects must be considered during all phases of a
software development project.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 20 / 295

6

Classic Computing Disasters

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 21 / 295

7

Spectre: Vulnerability of the Year 2018

unsigned char array1[16] /* base array */

unsigned int array1_size = 16; /* size of the base array */

int x; /* the out of bounds index */

unsigned char array2[256 * 256]; /* instrument for timing channel attack */

// ...

if (x < array1_size) {

y = array2[array1[x] * 256];

}

• Is your laptop vulnerable? Check now!

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 22 / 295

8

Spectre: Memory and CPU Caches

• Memory in modern computing systems is layered:

• Main memory is large but relatively slow compared to the speed of the CPUs

• CPUs have several layers of CPU caches, each layer faster but smaller

• CPU caches are not accessible from outside of the CPU

• When a CPU instruction needs data that is in the main memory but not in the
caches, then the CPU has to wait quite a while. . .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 23 / 295

9

Spectre: Timing Side Channel Attack

• A side-channel attack is any attack based on information gained from the physical
implementation of a computer system (e.g., timing, power consumption), rather
than weaknesses in an implemented algorithm itself.

• A timing side-channel attack infers data from timing observations.

• Even though the CPU cache can’t be read directly, it is possible to infer from
timing observations whether certain data is in a CPU cache or not.

• By accessing specific uncached memory locations and later checking via timing
observations whether these locations are cached, it is possible to communicate data
from the CPU using a cache timing side channel attack.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 24 / 295

10

Spectre: Speculative Execution

• If a CPU has to wait for slow memory, then simply guess a value and continue
excution speculatively; be prepared to rollback the speculative computation if the
guess later turns out to be wrong; if the guess was correct, commit the speculative
computation and move on.

• Speculative execution is in particular interesting for branch instructions that depend
on memory cell content that is not found in the CPU caches

• Some CPUs collect statistics about past branching behavior in order to do an
informed guess. This means we can train the CPUs to make a certain guess.

• Cache state is not restored during the rollback of a speculative execution.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 25 / 295

11

Spectre: Reading Arbitrary Memory

• Algorithm:

1. create a small array array1

2. choose an index x such that array1[x] is out of bounds
3. trick the CPU into speculative execution (make it to read array1_size from slow

memory and to guess wrongly)
4. create another uncached memory array called array2 and read

array2[array1[x]] to load this cell into the cache
5. read the entire array2 and observe the timing; it will reveal what the value of

array1[x] was

• This could be done with JavaScript running in your web browser; the easy “fix”
was to make the JavaScript time API less precise, thereby killing the timing side
channel.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 26 / 295

For further information:

• P. Kocher et al.: Spectre Attacks: Exploiting Speculative Execution

• M. Lipp et al.: Meltdown

• https://www.youtube.com/watch?v=6O8LTwVfTVs

• https://www.youtube.com/watch?v=mgAN4w7LH2o

12

https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01207
https://www.youtube.com/watch?v=6O8LTwVfTVs
https://www.youtube.com/watch?v=mgAN4w7LH2o

Dependability Concepts and Terminology

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 27 / 295

Dependability is a very general but important concept when we talk about computing systems. In this
part, we define the basic concepts and the terminology, following [2]. Note that [2] provides a much
more detailed treatment of the topic and students are encouraged to read the entire paper in order to
learn more about fault and failure classifications and fault tolerance techniques.

13

System and Environment and System Boundary

Definition (system, environment, system boundary)

A system is an entity that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world with its natural phenomena. The
other systems are the environment of the given system. The system boundary is the
common frontier between the system and its environment.

• Note that systems almost never exist in isolation.

• We often forget to think about all interactions of a system with its environment.

• Well-defined system boundaries are essential for the design of complex systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 28 / 295

An example for a system could be the standard C library. The system boundary of the C library is
defined by the set of C library calls. The functional specification of the C library calls is the C language
standard. The C library implementation may use other libraries (components) and it uses other systems
(e.g., the operating system kernel) that are part of the C library’s runtime environment.

Similarly, the operating system kernel can be seen as a system as well. The set of operating system calls
forms the system boundary. The operating system uses other systems such as hardware components
or other integrated hardware and software components that are attached to a computer.

It is crucial to think about systems, their environments and their dependencies. Catastrophic failures are
sometimes caused by an uncontrolled propagation of failures from one system to another. For example,
denial of service attacks can be more effective if attackers find systems that amplify their attacks and/or
make it difficult to trace back where the attack originated from.

14

Components and State

Definition (components)

The structure of a system is composed out of a set of components, where each
component is another system. The recursion stops when a component is considered
atomic.

Definition (total state)

The total state of a given system is the set of the following states: computation,
communication, stored information, interconnection, and physical condition.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 29 / 295

15

Function and Behaviour

Definition (function and functional specification)

The function of a system is what the system is intended to do and is described by the
functional specification.

Definition (behaviour)

The behaviour of a system is what the system does to implement its function and is
described by a sequence of states.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 30 / 295

It is important to stress that a functional specification is required when we talk about correctness. With-
out a clear and complete functional specification, we can not decide whether a system behaves correctly
or not.

We will look into program verification techniques later. These techniques verify the correctness of a
program against a functional specification. If the functional specification is incorrect, then of course the
verified program can be seen as incorrect, even though it is correct regarding the incorrect functional
specification.

Since functional specifications are often not formalized, it is in practice often necessary to derive a
formalized functional specification out of the original more informal functional specification in order to
apply program verification techniques. This formalization step can (i) introduce faults that did not exist
in the original informal functional specification or (ii) slightly change the specification such that it differs
in some subtle aspects from the original more informal functional specification.

Mistakes in functional specifications are often very expensive to fix. One reason is that they are of-
ten detected late in the software development process, for example at system integration time or at
deployment time or when the software is already in production.

16

Service and Correct Service

Definition (service)

The service delivered by a system is its behaviour as it is perceived by a its user(s); a
user is another system that receives service from the service provider.

Definition (correct service)

Correct service is delivered when the service implement the system function.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 31 / 295

Recall that the system function is defined in the functional specification. If the functional specification
is incomplete (a very likely scenario for many systems), then the service provided can be undefined in
certain situations, i.e., it is neither correct nor incorrect.

17

Failure versus Error versus Fault

Definition (failure)

A service failure, often abbreviated as failure, is an event that occurs when the delivered
service deviates from correct service.

Definition (error)

An error is the part of the total state of the system that may lead to its subsequent
service failure.

Definition (fault)

A fault is the adjudged or hypothesized cause of an error. A fault is active when it
produces an error, otherwise it is dormant.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 32 / 295

The dependability community uses the terms fault, error, and failure with a very precise distinction
between them. Other communites are much less precise about the usage of these terms and they may
even have an entirely different terminology in place. For example, the software engineering community
refers to faults often as bugs. (Some people claim the term bug goes back to computers that used
mechanical relais and one of them stopped working because of a bug trapped in a relay.)

Note that the model implies an error propagation model:

Component A

Component B

 fault

error

injection

fault error
activation

error
propagation

failure
propagation

fault
inactive

failure

propagation

propagation

It is follows directly from this graph that it is desirable

• to avoid faults and to reduce faults, and

• to prevent dormant faults from getting activated, and

• to detect and handle errors so that they do not propagate, and

• to detect and handle failures of other components or systems, and

• to reduce the number of ways external phenoma can inject faults.

It further follows directly that any program consuming data from an external source must carefully check
that the data matches the expectations of the program. So called SQL injection attacks exploit pro-
grams that fail to carefully validate the input and as a consequence send unexpected SQL queries to a
database system. Fuzzying techniques try to inject errors by generating random input that is likely to
trigger errors.

18

Dependability

Definition (dependability - original)

Dependability is the ability of a system to deliver service than can justifiably be trusted.

Definition (dependability - revised)

Dependability of a system is the ability to avoid service failures that are more frequent
and more severe than is acceptable.

• The revised definition provides a criterion for deciding if a system is dependable.

• Trust can be understood as a form of accepted dependance.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 33 / 295

19

Dependability Attributes

Definition (dependability attributes)

Dependability has the following attributes:

• Availability : readiness to deliver correct service

• Reliability : continuity of correct service

• Safety : absence of catastrophic consequences on the user(s) and the environment

• Integrity : absence of improper system alterations

• Maintainability : ability to undergo modifications and repairs

• Confidentiality : absence of unauthorized disclosure of information

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 34 / 295

20

Dependability and Security

Definition (security)

Security is a composite of the attributes of confidentiality, integrity, and availability.

• Note that using these definitions, security can be considered a subfield of
dependability. This does, however, not reflect how research communities have
organized themselves.

• As a consequence, terminology is generally not consistent. Security people, for
example, talk about vulnerabilities while dependability people talk about dormant
faults.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 35 / 295

21

Fault Prevention

Definition (fault prevention)

Fault prevention aims at preventing the occurance or introduction of faults.

• Application of good software engineering techniques and quality management
techniques during the entire development process.

• Hardening, shielding, etc. of physical systems to prevent physical faults.

• Maintenance and deployment procedures (e.g., firewalls, installation in access
controlled rooms, backup procedures) to prevent malicious faults.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 36 / 295

Fault prevention is a core topic of software engineering. The selection of a proper programming lan-
guage for a given task can have a big impact on the number and kind of faults that can be produced.
For example, a programming language that does automatic bounds checking for memory objects dra-
matically reduces buffer overrun faults. Similarly, a programming language that does automatic memory
management dramatically reduces problems due to memory leaks or the usage of deallocated memory.

Another important aspect is system complexity. Complex systems are very hard to maintain and extend
without introducing faults as side effects. It is thus crucial to find good system designs and abstractions
that encourage high cohesion and loose coupling. And it is crucial to maintain a good system design
(or even to improve the system design) during the lifecycle of a software product.

22

Fault Tolerance

Definition (fault tolerance)

Fault tolerance aims at avoiding service failures in the presence of faults.

• Error detection aims at detecting errors that are present in the system so that
recovery actions can be taken.

• Recovery handling eliminates errors from the system by rollback to an error-free
state or by error compensation (exploiting redundancy) or by rollforward to an
error-free state.

• Fault handling prevents located faults from being activated again.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 37 / 295

With the decreasing cost for computing power, it is meanwhile feasible to use replication of data and
computations in order to produce redundancy that can be used compensate errors and failures. For
example, a query sent to a search engine may be given to multiple independent backend systems and
the first response that is returned by the backends is returned to the user. This not only provide fast
response times but also handles occasional failures of backend systems nicely.

Data replication is another enabler for fault tolerance. Storage systems use replication at the system
level, across systems in a computing center, and even across entire computing centers. Of course,
guaranteeing data consistency in a distributed system with replicated data is not trivial. In order to
be efficient, modern systems often work with update semantics that are not atomic but only eventually
consistent. In other words, one can view the entire system as always being converging to an ideal
consistent state that might never be reached.

That said, there have also been examples where fault tolerance mechanisms, due to their complexity,
have caused failures that otherwise would not have occured.

23

Fault Removal

Definition (fault removal)

Fault removal aims at reducing the number and severity of faults.

• Fault removal during the development phase usually involves verification checks
whether the system satisfies required properties.

• Fault removal during the operational phase is often driven by errors that have been
detected and reported (corrective maintenance) or by faults that have been
observed in similar systems or that were found in the specification but which have
not led to errors yet (preventive maintenance).

• Sometimes it is impossible or too costly to remove a fault but it is possible to
prevent the activation of the fault or to limit the possible impact of the fault, i.e,
its severity.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 38 / 295

Fault removal during the development phase is most effective. Modern software engineering techniques
therefore encourage continued and extensive testing. Some modern development practices require
developers to write collections of test cases before starting to write the actual code. Furthermore,
quality control at later stages of the development process often involves people who were not involved
in the code development itself. Furthermore, the selection of programming languages, the training of
programmers, the programming paradigms used and so on all have an influence on the quality of the
produced software.

Fault removal in software systems during the operational phase is often done by installing updates or
patches. Software that is used in an open environment must be patched regularly. Patch management
is the process of using a strategy and plan of what patches should be applied to which systems at
a specified time. In other words, producers of goods that include software must have a plan how to
provide and distribute patches over the entirely lifecycle of the products. Similarly, users of goods that
include software must have a plan who is responsible to keep products patched.

Automatic software update mechanisms have emerged in the past few years in order to reduce the
burden on the user side and to improve the user experience. However, we are far from having robust
automatic software update mechanisms widely deployed, in particular considering embedded systems.

24

Fault Forecasting

Definition (fault forecasting)

Fault forecasting aims at estimating the present number, the future incidence, and the
likely consequences of faults.

• Qualitative evaluation identifies, classifies, and ranks the failure modes, or the
event combinations that would lead to failures.

• Quantitative evaluation determines the probabilities to which some of the
dependability attributes are satisfied.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 39 / 295

Fault forecasting is often done by collecting statistics about the changes made to a software system
and the number of bugs reported and fixed over time. The idea is to be able to predict how stable a
program is or how long one should wait after the release of a major new version until most of the faults
have been found and removed.

A recent study of open source computer network control software came to the conclusion that network
operators should wait almost a year before deploying a major new release.

25

Dependability Metrics

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 40 / 295

There are some metrics that measure reliability, availability, and safety dependability attributes. How-
ever, there are no commonly accepted metrics for correctness or security attributes.

26

Reliability and MTTF/MTBF/MTTR

Definition (reliability)

The reliability R(t) of a system S is defined as the probability that S is delivering
correct service in the time interval [0, t].

• A metric for the reliability R(t) for non repairable systems is the Mean Time To
Failure (MTTF), normally expressed in hours.

• A metric for the reliability R(t) for repairable systems is the Mean Time Between
Failures (MTBF), normally expressed in hours.

• The mean time it takes to repair a repairable system is called the Mean Time To
Repair (MTTR), normally expressed in hours.

• These metrics are valid in the steady-state, i.e., when the system does not change
or evolve.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 41 / 295

27

Availability

Definition (availability)

The availability A(t) of a system S is defined as the probability that S is delivering
correct service at time t.

• A metric for the average, steady-state availability of a repairable system is
A = MTBF/(MTBF + MTTR), normally expressed in percent.

• A certain percentage-value may be more or less useful depending on the “failure
distribution” (the “burstiness” of the failures).

• Critical computing systems usually have to guarantee a certain availability.
Availability requirements are often fixed in service level agreements.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 42 / 295

28

Availability and the “number of nines”

Availability Downtime per year Downtime per month Downtime per week Downtime per day

90% 36.5 d 72 h 16.8 h 2.4 h
99% 3.65 d 7.20 h 1.68 h 14.4min
99.9% 8.76 h 43.8min 10.1min 1.44min
99.99% 52.56min 4.38min 1.01min 8.64 s
99.999% 5.26min 25.9 s 6.05 s 864.3ms
99.9999% 31.5 s 2.59 s 604.8ms 86.4ms

• It is common practice to express the degrees of availability by the number of nines.
For example, “5 nines availability” means 99.999% availability.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 43 / 295

29

Safety

Definition (safety)

The safety S(t) of a system S is defined as the probability that S is delivering correct
service or has failed in a manner that does cause no harm in [0, t].

• A metric for safety S(t) is the Mean Time To Catastrophic Failure (MTTC),
defined similarly to MTTF and normally expressed in hours.

• Safety is reliability with respect to malign failures.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 44 / 295

Fail-safe systems are systems that have been engineered such that in the event of a specific type of
failure, the system inherently responds in a way that will cause no or minimal harm to other equipment,
the environment or to people.

30

Part II

Software Engineering

This part only touches on some aspects of software engineering since we have a separate course on
software engineering. In general, software engineering is a highly important topic in the commercial
and even the research world, but also very difficult to teach since students lack an understanding what
it means to work on really large software projects and within financial and time constraints.

In the following, we will first focus on topics that are relevant for preventing or detecting faults before
software become deployed for production. We will then look at techniques to specify the correctness of
programs and to verify whether a program is correct. We will also look into ways to describe and verify
patterns of interaction in concurrent systems.

The treatment of Floyd-Hoare triples and Floyd-Hoare logic is largely based on Mike Gordon’s execellent
“Background reading on Hoare Logic”.

31

General Aspects

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 46 / 295

32

Definitions of Software Engineering

Definition
The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software. (IEEE Standard Glossary of Software
Engineering Terminology)

Definition
The establishment and use of sound engineering principles in order to economically
obtain software that is reliable and works efficiently on real machines. (Fritz Bauer)

Definition
An engineering discipline that is concerned with all aspects of software production. (Ian
Sommerville)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 47 / 295

Good engineering essentially implies to produce a technical artefact that meets its technical require-
ments within a given budget and time constraint. The means are structured development processes.

33

Good Software Development Practices

• Coding Styles

• Documentation

• Version Control Systems

• Code Reviews and Pair Programming

• Automated Build and Testing Procedures

• Issue Tracking Systems

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 48 / 295

• Coding Styles

Readability is key. Since code is in general written and maintained by multiple people, it is helpful
to agree on a common coding style. Good program development environments help to follow
a common coding style. There are coding styles that were designed to minimize programming
errors (e.g., MISRA C1).

• Documentation

Documentation explaining details not obvious from the code is important. Nowadays, documen-
tation is often generated by tools (e.g., doxygen2) from structured documentation comments in-
cluded inline in the source code. (The idea is that this helps to keep code and documentation
consistent.)

• Version Control Systems

Version control systems such as git3 help to track different versions of a code base and they
support distributed and loosely coupled development schemes.

• Code Reviews and Pair Programming

Peer review of source code helps to improve the quality of the code committed to a project and
it facilitates peer-learning in a software development team. An extreme form is pair programming
where coding is always done in pairs of two programmers.

• Automated Build and Testing Procedures

The software build and testing process can be fully automated. This allows to run builds on many
different target platforms and the execution of regression tests on every commit.

• Issue Tracking Systems

Issue tracking systems organize the resolution of problems and feature requests. All discussions
related to a software issue are recorded and archived in a discussion thread. Issues are usually
labelled with metadata, which allows development managers to collect insights about the software
production process.

1https://en.wikipedia.org/wiki/MISRA_C
2https://en.wikipedia.org/wiki/Doxygen
3https://en.wikipedia.org/wiki/Git

34

https://en.wikipedia.org/wiki/MISRA_C
https://en.wikipedia.org/wiki/Doxygen
https://en.wikipedia.org/wiki/Git

Choice of Programming Languages

• Programming languages serve different purposes and it is important to select a
language that fits the given task

• Low-level languages can be very efficient but they tend to allow programmers to
make more mistakes

• High-level languages and in particular functional languages can lead to very
abstract but also very robust code

• Concurrency is important these days and the mechanisms available in different
programming languages can largely impact the robustness of the code

• Programming languages must match the skills of the developer team; introducing a
new languages requires to train developers

• Maintainability of code must be considered when programming languages are
selected

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 49 / 295

35

Defensive Programming

• It is common that functions are only partially defined.

• Defensive programming requires that the preconditions for a function are checked
when a function is called.

• For some complex functions, it might even be useful to check the postcondition,
i.e., that the function did achieve the desired result.

• Many programming languages have mechanisms to insert assertions into the course
code in order to check pre- and postconditions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 50 / 295

C programmer can use the assert() macro defined in assert.h to add assertions to their code. If
the assertion (an expression) fails, then diagnostic messages are written to the standard error. The
evaluation of assert expressions can be disabled to save execution time once the program is well de-
bugged. Note that assertions should be used to detect programming errors (i.e., function calls in an
invalid context), they are not to be used to handle runtime exceptions.

#include <assert.h>

int average(int *a, int size)

{

int sum = 0;

assert(a && size > 0);

for (int i = 0; i < size; i++) {

sum += a[i];

}

return sum / size;

}

Another example showing that sometimes testing whether a certain function has worked correctly is
easier than implementing the complex function:

#include <assert.h>

void sort(int *a, size_t n)

{

assert(a);

recursive_super_duper_sort(a, 0, n);

assert(is_sorted(a, n));

}

static bool is_sorted(int const *a, size_t n)

{

for (size_t i=0; i<n-1; i++) {

if (a[i] > a[i+1]) { return false; }

}

return true;

}

36

37

Software Testing

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 51 / 295

38

Unit and Regression Testing

• Unit testing
• Testing of units (abstract data types, classes, . . .) of source code.
• Usually supported by special unit testing libraries.

• Regression testing
• Testing of an entire program to ensure that a modified version of a program still

handles all input correctly that an older version of a program handled correctly.

• A software bug reported by a customer is primarily a weakness of the regression
test suite.

• Modern agile software development techniques rely on unit testing and regression
testing techniques.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 52 / 295

39

Test Coverages

• The test coverage is a measure used to describe the degree to which the source
code of a program is executed when a particular test suite runs.

• Function coverage:
• Has each function in the program been called?

• Statement coverage:
• Statement coverage: Has each statement in the program been executed?

• Branch coverage:
• Has each branch of each control structure been executed?

• Predicate coverage:
• Has each Boolean sub-expression evaluated both to true and false?

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 53 / 295

40

Mutation Testing

• Mutation testing evaluates the effectiveness of a test suite.

• The source code of a program is modified algorithmically by applying mutation
operations in order to produce mutants.

• A mutant is “killed” by a test suite if tests fail for the mutant. Mutants that are
not “killed” indicate that the test suite is incomplete.

• Mutation operators often mimic typical programming errors:
• Statement deletion, duplication, reordering, . . .
• Replacement of arithmetic operations with others
• Replacement of boolean operations with others
• Replacement of comparison relations with others
• Replacement of variables with others (of the same type)

• The mutation score is the number of mutants killed normalized by the number of
mutants.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 54 / 295

41

Fuzzying

• Fuzzying or fuzz testing feeds invalid, unexpected, or simply random data into
computer programs.
• Some fuzzers can generate input based on their awareness of the structure of input

data.
• Some fuzzers can adapt the input based on their awareness of the code structure

and which code paths have already been covered.

• The “american fuzzy lop” (ALF) uses genetic algorithms to adjust generated inputs
in order to quickly increase code coverage.

• AFL has detected a significant number of serious software bugs.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 55 / 295

42

Fault Injection

• Fault injection techniques inject faults into a program by either
• modifying source code (very similar to mutation testing) or
• injecting faults at runtime (often via modified library calls).

• Fault injection can be highly effective to test whether software deals with rare
failure situations, e.g., the injection of system calls failures that usually work.

• Fault injection can be used to evaluate the robustness of the communication
between programs (deleting, injecting, reordering messages).

• Can be implemented using library call interception techniques.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 56 / 295

43

Multiple Independent Computations

• Dionysius Lardner 1834:

The most certain and effectual check upon errors which arise in the
process of computation is to cause the same computations to be made by
separate and independent computers; and this check is rendered still more
decisive if they make their computations by different methods.

• Charles Babbage, 1837:

When the formula to be computed is very complicated, it may be
algebraically arranged for computation in two or more totally distinct
ways, and two or more sets of cards may be made. If the same constants
are now employed with each set, we may then be quite sure of the
accuracy of them all.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 57 / 295

Safety-relevant systems are sometimes constructed such that they do independent computations on
different hardware systems and there is a fail-safe (or proven to be correct) unit comparing the indepen-
dently computed results. Note that this also applies to the software used. In order to be able to detect
errors, it is possible to let two independent teams implement the same functionality using different pro-
gramming languages and algorithms.

44

Software Specification

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 58 / 295

45

Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 59 / 295

46

Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q}

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 60 / 295

The classic publication introducing Hoare logic is [10]. Tony Hoare has made several other notable
contributions to computer science: He invented the basis of the Quicksort algorithm (published in 1962)
and he has developed the formalism Communicating Sequential Processes (CSP) to describe patterns
of interaction in concurrent systems (published in 1978).

P and Q are conditions on program variables. They will be written using standard mathematical notation
and logical operators.

47

Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that always a result is produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 61 / 295

The distinction between partial correctness and total correctness is of fundamental importance. Total
correctness requires termination, which is generally impossible to prove in an automated way as this
would require to solve the famous halting problem. Alan Turing proved in 1936 that a general algorithm
to solve the halting problem for all possible program-input pairs cannot exist.

A definition of the form {P} C {Q} usually provides a partial correctness specification. We may use the
notation [P] C [Q] for a total correctness specification.

48

Hoare Notation Conventions

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of particular
variables are X , Y , R etc.

2. The symbols E , E1, . . . , En stand for arbitrary expressions (or terms). These are
expressions like X + 1,

√
2 etc., which denote values (usually numbers).

3. The symbols S , S1, . . . , Sn stand for arbitrary statements. These are conditions
like X < Y , X 2 = 1 etc., which are either true or false.

4. The symbols C , C1 , . . . , Cn stand for arbitrary commands of our programming
language; these commands are described in the following slides.

• We will use lowercase letters such as x and y to denote auxiliary variables (e.g., to
denote values stored in variables).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 62 / 295

We are focusing in the following on a purely imperative programming model where a global set of
variables determines the current state of the computation. A subset of the variables are used to provide
the input to an algorithm and another subset of the variables provides the output of an algorithm.

Note that we talk about a programming language consisting of commands and we use the term state-
ments to refer to conditions. This may be a bit confusing since programming languages often call our
commands statements and they may call our statements conditions.

49

Hoare Assignments

• Syntax: V := E

• Semantics: The state is changed by assigning the value of the term E to the
variable V . All variables are assumed to have global scope.

• Example: X := X + 1

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 63 / 295

50

Hoare Skip Command

• Syntax: SKIP

• Semantics: Do nothing. The state after execution the command SKIP is the same
as the state before executing the command SKIP .

• Example: SKIP

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 64 / 295

The SKIP command does nothing. It is still useful since it allows us to construct a single conditional
command.

51

Hoare Command Sequences

• Syntax: C1; . . . ; Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Example: R := X ; X := Y ; Y := R

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 65 / 295

The example sequence shown above swaps the content of X and Y . Note that it has a side-effect since
it also assigns the initial value of X to R. A specification of the swap program as a Floyd-Hoare triple
would be the following:

{X = x ∧ Y = y} R := X;X := Y ;Y := R {X = y ∧ Y = x}

Since the program does not involve any loops, it is easy to see that we could also easily specify total
correctness:

[X = x ∧ Y = y] R := X;X := Y ;Y := R [X = y ∧ Y = x]

52

Hoare Conditionals

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Example: IF X < Y THEN M := Y ELSE M := X FI

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 66 / 295

Note that we can use SKIP to create conditional statements without a THEN or ELSE branch:

IF S THEN C ELSE SKIP FI

IF S THEN SKIP ELSE C FI

53

Hoare While Loop

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• Example: WHILE ¬(X = 0) DO X := X − 2 OD

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 67 / 295

Our notation uses a convention that was popular in the 1970s to denote the end of a programming
language construct by repeating a keyword with the letters reversed. An early programming language
using this notation was Algol 68. You find similar syntactic ideas in Bourne shells (if / fi, case / esac).

54

Termination can be Tricky

1: function collatz(X)
2: while X > 1 do
3: if (X %2) 6= 0 then
4: X ← (3 · X) + 1
5: else
6: X ← X/2
7: end if
8: end while
9: return X

10: end function

• Does the function shown above terminate for all values X ?

• Collatz conjecture: The program will eventually return the number 1, regardless of
which positive integer is chosen initially.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 68 / 295

This program calculates the so called Collatz sequence. The Collatz conjecture is that no matter what
value of n ∈ N you start with, the sequence will always reach 1. For example, starting with n = 12, one
gets the sequence 12, 6, 3, 10, 5, 16, 8, 4, 2, 1.

For further information:

• https://en.wikipedia.org/wiki/Collatz_conjecture

55

https://en.wikipedia.org/wiki/Collatz_conjecture

Specification can be Tricky

• Specification for the maximum of two variables:

{T} C {Y = max(X ,Y)}

• C could be:

IF X > Y THEN Y := X ELSE SKIP FI

• But C could also be:

IF X > Y THEN X := Y ELSE SKIP FI

• And C could also be:

Y := X

• Use auxiliary variables x and y to associate Q with P :

{X = x ∧ Y = y} C {Y = max(x , y)}
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 69 / 295

56

Software Verification

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 70 / 295

57

Floyd-Hoare Logic

• Floyd-Hoare Logic is a set of inference rules that enable us to formally proof partial
correctness of a program.

• If S is a statement, we write ` S to mean that S has a proof.

• The axioms of Hoare logic will be specified with a notation of the following form:

` S1, . . . ,` Sn

` S

• The conclusion S may be deduced from ` S1, . . . ,` Sn, which are the hypotheses
of the rule.

• The hypotheses can be theorems of Floyd-Hoare logic or they can be theorems of
mathematics.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 71 / 295

Floyd-Hoare logic is a deductive proof system for Floyd-Hoare triples. It can be used to extract ver-
ification conditions (VCs), which are proof obligations or proof subgoals that must be proven so that
{P} C {Q} is true.

58

Assignment Axiom

• Let P[E/V] (P with E for V) denote the result of substituting the term E for all
occurances of the variable V in the statement P .

• An assignment assigns a variable V an expression E :

` {P[E/V]} V := E {P}

• Example:
{X + 1 = n + 1} X := X + 1 {X = n + 1}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 72 / 295

The assignment axiom kind of works backwards. In the example, we start with P , which is {X = n+1}.
In P , we substitute E, which is X + 1, for V , which is X. This gives us {X + 1 = n+ 1}.
Note that the term E is evaluated in a state where the assignment has not yet been carried out. Hence,
if a statement P is true after the assignment, then the statement obtained by substituting E for V in P
must be true before the assignment.

Two common erroneous intuitions:

1. ` {P} V := E {P [V/E]}
This has the consequence ` {X = 0} X := 1 {X = 0} since X = 0[X/1] is equal to X = 0 (since
1 does not occur in X = 0).

2. ` {P} V := E {P [E/V]}
This has the consequence ` {X = 0} X := 1 {1 = 0} since one would substitute X with 1 in
X = 0.

Warning: An important assumption here is that expressions have no side effects that modify the program
state. The assignment axiom depends on this property. (Many real-world programming languages,
however, do allow side effects.) To see why side effects cause problems, consider an expression (C;E)
that consists of a command C and an expression E, e.g. (Y := 1; 2). With this, we would get ` {Y =
0} X := (Y := 1; 2) {Y = 0} (the substitution would not affect Y).

59

Precondition Strengthening

• If P implies P ′ and we have shown {P ′} C {Q}, then {P} C {Q} holds as well:

` P → P ′, ` {P ′} C {Q}
` {P} C {Q}

• Example: Since ` X = n→ X + 1 = n + 1, we can strengthen

` {X + 1 = n + 1} X := X + 1 {X = n + 1}

to
` {X = n} X := X + 1 {X = n + 1}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 73 / 295

Precondition strengthening applied to the assignment axiom gives us a triple that feels more intuitive.
But keep in mind that ` {X = n} X := X + 1 {X = n + 1} has been derived by combining the
assignment axiom with precondition strengthening.

60

Postcondition Weakening

• If Q ′ implies Q and we have shown {P} C {Q ′}, then {P} C {Q} holds as well:

` {P} C {Q ′}, ` Q ′ → Q

` {P} C {Q}

• Example: Since X = n + 1→ X > n, we can weaken

` {X = n} X := X + 1 {X = n + 1}

to
` {X = n} X := X + 1 {X > n}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 74 / 295

61

Specification Conjunction and Disjunction

• If we have shown {P1} C {Q1} and {P2} C {Q2}, then {P1 ∧ P2} C {Q1 ∧ Q2}
holds as well:

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∧ P2} C {Q1 ∧ Q2}

• We get a similar rule for disjunctions:

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∨ P2} C {Q1 ∨ Q2}

• These rules allows us to prove ` {P} C {Q1 ∧ Q2} by proving both ` {P} C {Q1}
and ` {P} C {Q2}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 75 / 295

62

Skip Command Rule

• Syntax: SKIP

• Semantics: Do nothing. The state after execution the command SKIP is the same
as the state before executing the command SKIP .

• Skip Command Rule:

` {P} SKIP {P}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 76 / 295

63

Sequence Rule

• Syntax: C1; . . . ; Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Sequence Rule:

` {P} C1 {R}, ` {R} C2 {Q}
` {P} C1; C2 {Q}

The sequence rule can be easily generalized to n > 2 commands:

` {P} C1 {R1}, ` {R1} C2 {R2}, . . . , ` {Rn−1} Cn {Q}
` {P} C1; C2; . . . ; Cn {Q}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 77 / 295

Example:

(i) ` {X = x ∧ Y = y} R := X {R = x ∧ Y = y} (assignment axiom)

(ii) ` {R = x ∧ Y = y} X := Y {R = x ∧X = y} (assignment axiom)

(iii) ` {R = x ∧X = y} Y := R {Y = x ∧X = y} (assignment axiom)

(iv) ` {X = x ∧ Y = y} R := X;X := Y {R = x ∧X = y} (sequence rule for (i) and (ii))

(v) ` {X = x ∧ Y = y} R := X;X := Y ;Y := R {Y = x ∧X = y} (sequence rule for (iv) and (iii))

64

Conditional Command Rule

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Conditional Rule:

` {P ∧ S} C1 {Q}, ` {P ∧ ¬S} C2 {Q}
` {P} IF S THEN C1 ELSE C2 FI {Q}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 78 / 295

Consider the program IF X ≥ Y THEN M := X ELSE M := Y FI with the specification:

{X = x ∧ Y = y} IF X ≥ Y THEN M := X ELSE M := Y FI {M = max(x, y)}

In order to prove the partial correctness of this program, we have to prove the correctness of the two
assignments under the statement X ≥ Y being either true or false. The application of the assignment
axiom gives us the following two statements:

{X = x ∧ Y = y ∧X ≥ Y }M := X {M = x ∧X = x ∧ Y = y ∧X ≥ Y }

{X = x ∧ Y = y ∧X < Y }M := Y {M = y ∧X = x ∧ Y = y ∧X ≥ Y }
The mathematical definition of max(x, y) we are going to use is the following:

max(x, y) =

{
x x ≥ y
y x < y

This gives us the following implications:

M = x ∧X = x ∧ Y = y ∧X ≥ Y →M = max(x, y)

M = y ∧X = x ∧ Y = y ∧X < Y →M = max(x, y)

Postcondition weakening gives us:

{X = x ∧ Y = y ∧X ≥ Y }M := X {M = max(x, y)}

{X = x ∧ Y = y ∧X < Y }M := Y {M = max(x, y)}
Applying the conditional rule, we get:

{X = x ∧ Y = y} IF X ≥ Y THEN M := X ELSE M := Y FI {M = max(x, y)}

65

While Command Rule

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• While Rule:

` {P ∧ S} C {P}
` {P} WHILE S DO C OD {P ∧ ¬S}

P is an invariant of C whenever S holds. Since executing C preserves the truth of
P , executing C any numbner of times also preserves the truth of P .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 79 / 295

Finding invariants is the key to prove the correctness of while loops. The invariant should

• say what has been done so far together with that what remains to be done;

• hold at each iteration of the loop;

• give the desired result when the loop terminates.

Example (factorial):

{Y = 1 ∧ Z = 0}WHILE Z 6= X DO Z := Z + 1; Y := Y ∗ Z; OD {Y = X!}

We need to find an invariant P such that:

• {P ∧ Z 6= X} Z := Z + 1; Y := Y ∗ Z {P} (while rule)

• Y = 1 ∧ Z = 0→ P (precondition strengthening)

• P ∧ ¬(Z 6= X)→ Y = X! (postcondition weakening)

The invariant Y = Z! serves the purpose:

• Y = Z! ∧ Z 6= X → Y · (Z + 1) = (Z + 1)!
{Y · (Z + 1) = (Z + 1)!} Z := Z + 1 {Y · Z = Z!} (assignment axiom)
{Y · Z = Z!} Y := Y ∗ Z {Y = Z!} (assignment axiom)
{Y = Z!} Z := Z + 1; Y := Y ∗ Z {Y = Z!} (sequence rule)

• Y = 1 ∧ Z = 0→ Y = Z! since 0! = 1

• Y = Z! ∧ ¬(Z 6= X)→ Y = X! since ¬(Z 6= X) is equivalent to Z = X

66

Arrays

• Let the terms A{E1 ← E 2} denote an array identical to A with the E1-th
component changed to the value E2.

• With this, the assignment command can be extended to support arrays, i.e., the
array assignment is a special case of an ordinary variable assignment.

` {P[A{E1 ← E2}/A]} A[E1] := E2 {P}

• The following axioms are needed to reason about arrays:

` A{E1 ← E2}[E1] = E2

E1 6= E2 → ` A{E1 ← E 2}[E3] = A[E3]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 80 / 295

Example (swapping two array elements):

{A[X] = x ∧A[Y] = y}
R := A[X]; A[X] := A[Y]; A[Y] := R
{A[X] = y ∧A[Y] = x}
Working from the postcondition backwards we get:

{A{Y ← R}[X] = y ∧A{Y ← R}[Y] = x}
A[Y] := R
{A[X] = y ∧A[Y] = x}
Applying precondition strengthening, using A{Y ← R}[Y] = R, this simplifies to:

{A{Y ← R}[X] = y ∧R = x}
A[Y] := R
{A[X] = y ∧A[Y] = x}
Continuing backwards, we get:

{A{X ← A[Y]}{Y ← R}[X] = y ∧R = x}
A[X] := A[Y]
{A{Y ← R}[X] = y ∧R = x}
Continuing one more step backwards, we get:

{A{X ← A[Y]}{Y ← A[X]}[X] = y ∧A[X] = x}
R := A[X]
{A{X ← A[Y]}{Y ← R}[X] = y ∧R = x}
Applying the sequencing rule, we get:

{A{X ← A[Y]}{Y ← A[X]}[X] = y ∧A[X] = x}
R := A[X]; A[X] := A[Y]; A[Y] := R
{A[X] = y ∧A[Y] = x}
Using the array axioms (considering X = Y and X 6= Y separately), we obtain:

A{X ← A[Y]}{Y ← A[X]}[X] = A[Y]

This leads us to what we needed to show.

67

Weakest Precondition

Definition (weakest precondition)

Given a program C and a postcondition Q, the weakest precondition wp(C ,Q) denotes
the largest set of states for which C terminates and the resulting state satisfies Q.

Definition (weakest liberal precondition)

Given a program C and a postcondition Q, the weakest liberal precondition wlp(C ,Q)
denotes the largest set of states for which C leads to a resulting state satisfying Q.

• The “weakest” precondition P means that any other valid precondition implies P .

• The definition of wp(C ,Q) is due to Dijkstra (1976) and it requires termination
while wlp(C ,Q) does not require termination.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 81 / 295

In Hoare Logic, we can usually define many valid preconditions. For example, all of the following are
valid Hoare triples:

` {X = 1} X := X + 1 {X > 0}

` {X > 0} X := X + 1 {X > 0}
` {X > −1} X := X + 1 {X > 0}

Obviously, the second preconditions is weaker than the first since X = 1 implies X > 0. With a similar
argument, the third precondition is weaker than the second since X > 0 implies X > −1. How does the
precondition X = 0 compare to the second and third alternative?

The weakest liberal precondition for X := X + 1 and the postcondition X > 0 is:

wlp(X := X + 1, X > 0) = (X > −1)

Since we can assume that the assignment always terminates in this specific case, we have:

wp(X := X + 1, X > 0) = wlp(X := X + 1, X > 0) = (X > −1)

68

Strongest Postcondition

Definition (stronges postcondition)

Given a program C and a precondition P , the strongest postcondition sp(C ,P) has the
property that ` {P} C {sp(C ,P)} and for any Q with ` {P} C {Q}, we have
` sp(C ,P)→ Q.

• The “strongest” postcondition Q means that any other valid postcondition is
implied by Q (via postcondition weakening).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 82 / 295

69

Proof Automation

• Proving even simple programs takes a lot of effort

• There is a high risk to make mistakes during the process

• General idea how to automate the proof:

(i) Let the human expert provide annotations of the specification (e.g., loop invariants)
that help with the generation of proof obligations

(ii) Generate proof obligations automatically (verfication conditions)
(iii) Use automated theorem provers to verify some of the proof obligations
(iv) Let the human expert prove the remaining proof obligations (or let the human

expert provide additional annotations that help the automated theorem prover)

• Step (ii) essentially compiles an annotated program into a conventional
mathematical problem.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 83 / 295

Consider the following program:

Precondition: {>}
1: R := X
2: Q := 0
3: while Y ≤ R do
4: R := R− Y
5: Q := Q+ 1
6: od

Postcondition: {X = Y ·Q+R ∧R < Y }

70

Annotations

• Annotations are required

(i) before each command Ci (with i > 1) in a sequence C1;C2; . . . ;Cn, where Ci is not
an assignment command and

(ii) after the keyword DO in a WHILE command (loop invariant)

• The inserted annotation is expected to be true whenever the execution reaches the
point of the annotation.

• For a properly annotation program, it is possible to generate a set of proof goals
(verification conditions).

• It can be shown that once all generated verification conditions have been proved,
then ` {P} C {Q}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 84 / 295

We add suitable annotations:

Precondition: {>}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: R := R− Y
7: Q := Q+ 1
8: od

Postcondition: {X = Y ·Q+R ∧R < Y }

This should (ideally automatically) lead to the following proof obligations (verification conditions):

1. > → (X = X ∧ 0 = 0)

2. (R = X ∧Q = 0)→ (X = Y ·Q+R)

3. (X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y)

4. (X = Y ·Q+R ∧ Y ≤ R)→ (X = Y · (Q+ 1) + (R− Y)

71

Generation of Verification Conditions

• Assignment {P} V := E {Q}:
Add verification condition P → Q[E/V].

• Conditions {P} IF S THEN C1 ELSE C2 FI {Q}
Add verification conditions generated by {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}

• Sequences of the form {P} C1; . . . ; Cn−1; {R} Cn {Q}
Add verification conditions generated by {P} C1; . . . ; Cn−1 {R} and {R} Cn {Q}

• Sequences of the form {P} C1; . . . ; Cn−1; V := E {Q}
Add verification conditions generated by {P} C1; . . . ; Cn−1 {Q[E/V]}

• While loops {P} WHILE S DO {R} C OD {Q}
Add verification conditions P → R and R ∧ ¬S → Q
Add verificiation conditions generated by {R ∧ S} C {R}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 85 / 295

Starting with the annotated example:

Precondition: {>}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: R := R− Y
7: Q := Q+ 1
8: od

Postcondition: {X = Y ·Q+R ∧R < Y }

According to the second sequence rule, we have to generate VCs for the while loop and the sequence
consisting of the initial assignments. The initial assignments reduce to > → (X = X ∧0 = 0) as follows:

{>} R := X; Q := 0 {R = X ∧Q = 0}
{>} R := X {R = X ∧ 0 = 0}
> → (X = X ∧ 0 = 0)

The while loop rule gives us the following two VCs

(R = X ∧Q = 0)→ (X = Y ·Q+R)

(X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y)

and the VC generated as follows:

{X = Y ·Q+R ∧ Y ≤ R} R := R− Y ; Q := Q+ 1 {X = Y ·Q+R}
{X = Y ·Q+R ∧ Y ≤ R} R := R− Y ; {X = Y · (Q+ 1) +R}
(X = Y ·Q+R ∧ Y ≤ R)→ (X = Y · (Q+ 1) + (R− Y))

72

Total Correctness

• We assume that the evaluation of expressions always terminates.

• With this simplifying assumption, only WHILE commands can cause loops that
potentially do not terminate.

• All rules for the other commands can simply be extended to cover total correctness.

• The assumption that expression evaluation always terminates is often not true.
(Consider recursive functions that can go into an endless recursion.)

• We have so far also silently assumed that the evaluation of expressions always
yields a proper value, which is not the case for a division by zero.

• Relaxing our assumptions for expressions is possible but complicates matters
significantly.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 86 / 295

If C does not contain any while commands, then we have the simple rule:

` {P} C {Q}
` [P] C [Q]

73

Rules for Total Correctness [1/4]

• Assignment axiom
` [P[E/V]] V := E [P]

• Precondition strengthening

` P → P ′, ` [P ′] C [Q]

` [P] C [Q]

• Postcondition weakening

` [P] C [Q ′], ` Q ′ → Q

` [P] C [Q]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 87 / 295

74

Rules for Total Correctness [2/4]

• Specification conjunction

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∧ P2] C [Q1 ∧ Q2]

• Specification disjunction

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∨ P2] C [Q1 ∨ Q2]

• Skip command rule

[P] SKIP [P]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 88 / 295

75

Rules for Total Correctness [3/4]

• Sequence rule

` [P] C1 [R1], ` [R1] C2 [R2], . . . , ` [Rn−1] Cn [Q]

` [P] C1; C2; . . . ; Cn [Q]

• Conditional rule
` [P ∧ S] C1 [Q], ` [P ∧ ¬S] C2 [Q]

` [P] IF S THEN C1 ELSE C2 FI [Q]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 89 / 295

76

Rules for Total Correctness [4/4]

• While rule

` [P ∧ S ∧ E = n] C [P ∧ (E < n)], ` P ∧ S → E ≥ 0

` [P] WHILE S DO C OD [P ∧ ¬S]

E is an integer-valued expression
n is an auxiliary variable not occuring in P , C , S , or E

• A prove has to show that a non-negative integer, called a variant, decreases on
each iteration of the loop command C .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 90 / 295

We show that the while loop in the following program terminates.

Precondition: {>}
1: R := X
2: Q := 0
3: while Y ≤ R do
4: R := R− Y
5: Q := Q+ 1
6: od

Postcondition: {X = Y ·Q+R ∧R < Y }

We apply the while rule with

P = Y > 0

S = Y ≤ R
E = R

and we have to show the following to be true:

1. [P ∧ S ∧ E = n] R := R− Y ;Q := Q+ 1 [P ∧ (E < n)]

This follows from the following derivation:

[P ∧ S ∧ E = n] R := R− Y ;Q := Q+ 1 [P ∧ (E < n)]

[Y > 0 ∧ Y ≤ R ∧R = n] R := R− Y ;Q := Q+ 1 [Y > 0 ∧ (R < n)]

Y > 0 ∧ Y ≤ R ∧R = n→ Y > 0 ∧ (R < n)[Q+ 1/Q][R− Y/R]
Y > 0 ∧ Y ≤ R ∧R = n→ Y > 0 ∧ ((R− Y) < n)

2. P ∧ S → E ≥ 0

This follows from:

P ∧ S → E ≥ 0

Y > 0 ∧ Y ≤ R→ R > 0

77

Generation of Termination Verification Conditions

• The rules for the generation of termination verificiation conditions follow directly
from the rules for the generation of partial correctness verificiation conditions,
except for the while command.

• To handle the while command, we need an additional annotation (in square
brackets) that provides the variant expression.

• For while loops of the form {P} WHILE S DO {R} [E] C OD {Q} add the
verification conditions

P → R

R ∧ ¬S → Q

R ∧ S → E ≥ 0

and add verificiation conditions generated by {R ∧ S ∧ (E = n)} C {R ∧ (E < n)}
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 91 / 295

Annotated example including the variant annotation for termination verification rule generation:

Precondition: {>}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: [R]
7: R := R− Y
8: Q := Q+ 1
9: od

Postcondition: {X = Y ·Q+R ∧R < Y }

The while loop rule gives use the following termination VCs

(R = X ∧Q = 0)→ (X = Y ·Q+R)

(X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y)

(X = Y ·Q+R ∧ (Y ≤ R))→ R ≥ 0

and the VC generated as follows:

{X = Y ·Q+R ∧ Y ≤ R ∧R = n} R := R− Y ; Q := Q+ 1 {X = Y ·Q+R ∧R < n}
{X = Y ·Q+R ∧ Y ≤ R ∧R = n} R := R− Y ; {X = Y · (Q+ 1) +R ∧R < n}
(X = Y ·Q+R ∧ Y ≤ R ∧R = n)→ (X = Y · (Q+ 1) + (R− Y) ∧ (R− Y) < n)

The last VC is not true in general and hence the algorithm does not always terminate:

Y = 0 :

((X = R ∧ 0 ≤ R ∧R = n)→ (X = R ∧R < n))→ ⊥

Y < 0 :

((X = Y ·Q+R ∧ Y ≤ R ∧R = n)→ (X = Y · (Q+ 1) + (R− Y) ∧ (R− Y) < n))→ ⊥

78

Termination and Correctness

• Partial correctness and termination implies total correctness:

` {P} C {Q}, ` [P] C [T]

` [P] C [Q]

• Total correctness implies partial correctness and termination:

` [P] C [Q]

` {P} C {Q}, ` [P] C [T]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 92 / 295

79

Part III

Concurrency and Distributed Algorithms

Most larger programs these days are concurrent and the dependability of complex software systems
often depends on how concurrency requirements have been addressed. It is thus useful to look at basic
ideas to model concurrency.

Some programming languages address concurrency as part of their language design. The Erlang
language is build on the actor model, while the more recent Go language is build on the communicating
sequential processes model (although not purely).

Note that concurrency should not be confused with parallelism. Concurrency deals with tasks that can
start, run, and complete in overlapping time periods. Concurrency does not necessarily mean the tasks
will ever be running at the same time. Parallelism is when tasks are simultaneously executed, e.g., on a
multicore processor. As Rob Pike once said, “concurrency is about dealing with a lot of things are once
while parallelism is doing a lot of things at once”.

The discussion of some basic concepts of distributed algorithms follows Gerald Tel’s book on distributed
algorithms [19]. We focus, however, on the parts that provide an basic understanding of the aspects of
building distributed systems that are fault tolerant.

80

Concurrency Overview

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 94 / 295

81

Actor Model (Hewitt 1973)

• An actor is a computational entity that, in response to a message it receives, can
concurrently:
• send a finite number of messages to other actors;
• create a finite number of new actors;
• designate the behavior to be used for the next message it receives.

• There is no assumed order on the actions and they could be carried out in parallel.

• Everything is an actor. An actor can only communicate with actors whose
addresses it has.

• Actors are concurrent, interaction only through direct asynchronous message
passing.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 95 / 295

82

Communicating Sequential Processes (Hoare 1978)

• Communicating Sequential Processes (CSP) were proposed as a foundation for a
concurrent programming language and the ideas later formalized into a calculus
belonging to the family of process calculi, mathematical formalisms for describing
and analyzing properties of concurrent computation.

• CSP is based on events and processes and a message passing idea using channels.

• CSP processes are anonymous, actors have identified names.

• CSP message-passing fundamentally involves a rendezvous between the processes
involved in sending and receiving the message.

• CSP uses explicit channels for message passing, whereas actor systems transmit
messages to named destination actors.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 96 / 295

The original CSP paper [11] appeared in 1978 and was very close to programming language concepts
but the CSP idea has evolved significantly since then towards a mathematical model. A very good
introduction is the CSP book [12], which you can find online (but note the usage restrictions).

83

Logical Clocks (Lamport 1978)

• Analyzing distributed systems requires to understand causality.

• It is important to know what happend before a certain event that can have
influenced the event.

• Regular time does not provide a good way to express an order of events in a
distributed system (clock synchronization issues)

• Lamport proposed logical clocks that can express the happened-before relation on
the set of events.

• Lamport express happened-before, they are insufficient to express causality or
concurrency.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 97 / 295

[14]

84

π Calculus (Milner 1992)

• The π-calculus belongs to the family of process calculi, mathematical formalisms
for describing and analyzing properties of concurrent computation.

• The aim of the π-calculus is to be able to describe concurrent computations whose
configuration may change during the computation

• The π-calculus is general (turing complete).

• The π-calculus has been extended with cryptographic primitives to the spi-calculus
in order to analyze cryptographic protocols.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 98 / 295

85

Model of Distributed Algorithms

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 99 / 295

86

Transition System

Definition (transition system)

A transition system is a triple S = (C,→, I) where C is a set of configurations, → is a
binary transition relation on C, and I is a subset of C of initial configurations.

Definition (execution)

Let S = (C,→, I) be a transition system. An execution of S is a maximal sequence
E = (γ0, γ1, . . .), where γ0 ∈ I and γi → γi+1 for all i ≥ 0.

• A transition relation is a subset of C × C.

• The notation γ → δ is used for (γ, δ) ∈→.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 100 / 295

87

Transition System

Definition (reachability)

Configuration δ is reachable from γ, notation γ ; δ, if there exists a sequence
γ = γ0, γ1, . . . , γk = δ with γi → γi+1 for all 0 ≤ i < k .

• A terminal configuration is a configuration γ for which there is no δ such that
γ → δ

• A sequence E (γ0, γ1, . . .) with γi → γi+1 for all i is maximal if it is either infinite or
ends in a terminal configuration

• Configuration δ is said to be reachable if it is reachable from an initial
configuration.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 101 / 295

88

Local Algorithm

Definition (local algorithm)

The local algorithm of a process is a quintuple (Z , I ,`i ,`s ,`r), where Z is a set of
states, I is a subset of Z of initial states, `i is a relation on Z × Z , and `s and `r are
relations on Z ×M× Z . The binary relation ` on Z is defined by

c ` d ⇐⇒ (c , d) ∈`i ∨∃m ∈M : (c ,m, d) ∈ (`s ∪ `r).

• Let M be a set of possible messages. We denote the collection of multisets with
elements from M with M(M).

• The relations `i , `s , and `r correspond to state transitions related with internal,
send, and receive events.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 102 / 295

A local algorithm is simply a sequence of local state transformations, send events and receive events.
This is a rather abstract view but our goal is to focus on the interaction between local algorithms.

89

Distributed Algorithm

Definition (distributed algorithm)

A distributed algorithm for a collection P = {p1, . . . , pN} of processes is a collection of
local algorithms, one for each process in P.

• A configuration of a transition system consists of the state of each process and the
collection of messages in transit

• The transitions are the events of the processes, which do not only affect the state
of the process, but can also affect (and be affected by) the collection of messages

• The initial configurations are the configurations where each process is in an initial
state and the message collection is empty

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 103 / 295

We are constructing a distributed algorithm out of local algorithms. Note that we make some simplify-
ing assumptions here. One of them is that we assume the set of processes involved in a distributed
algorithms to be constant.

We use the term process in a generic sense. A process in our context does not have to be an operating
system level process. It can as well be a thread or a corouting in a concurrent program (but we assume
that all processes only exchange data via send and receive primitives, i.e., there is no shared memory).

90

Induced Async. Transition System

Definition (Induced Async. Transition System)

The transition system S = (C,→, I) is induced under asynchronous communication by
a distributed algorithm for processes p1, . . . , pN , where the local algorithm for process pi

is (Zpi , Ipi ,`ipi ,`spi ,`rpi), is given by

(1) C = {(cp1 , . . . , cpN ,M) : (∀p ∈ P : cp ∈ Zp) ∧M ∈M(M)}
(2) → (see next slide)

(3) I = {(cp1 , . . . , cpN ,M) : (∀p ∈ P : cp ∈ Ip) ∧M = ∅}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 104 / 295

An asynchronous transition system can store messages that are in transit. A sending process does not
have to synchronize with a receiving process in order to send a message. Sending and receiving of
messages is asynchronous, which implies that messages in transit can be buffered somewhere.

Asynchronous systems are quite common when we think of communication protocols and communica-
tion middleware such as message queues.

91

Induced Async. Transition System

Definition (Induced Async. Transition System (cont.))

(2) →= (
⋃

p∈P →p), where the →p are the transitions corresponding to the state
changes of process p; →pi is the set of pairs

(cp1 , . . . , cpi , . . . , cpN ,M1), (cp1 , . . . , c
′
pi
, . . . , cpN ,M2)

for which one of the following three conditions holds:
• (cpi , c

′
pi

) ∈`ipi and M1 = M2

• for some m ∈M, (cpi ,m, c ′pi) ∈`spi and M2 = M1 ∪ {m}
• for some m ∈M, (cpi ,m, c ′pi) ∈`rpi and M1 = M2 ∪ {m}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 105 / 295

92

Induced Sync. Transition System

Definition (Induced Sync. Transition System)

The transition system S = (C,→, I) is induced under synchronous communication by a
distributed algorithm for processes p1, . . . , pN , where the local algorithm for process pi

is (Zpi , Ipi ,`ipi ,`spi ,`rpi), is given by

(1) C = {(cp1 , . . . , cpN) : (∀p ∈ P : cp ∈ Zp)}
(2) → (see next slide)

(3) I = {(cp1 , . . . , cpN) : (∀p ∈ P : cp ∈ Ip)}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 106 / 295

A synchronous transition system does not store messages in transit. A sending process has to block
until a receiving process is willing to receive a message.Sending and receiving of messages is syn-
chronous.

Synchronous systems are less common in practice but important to study. Algorithms for a given dis-
tributed computing problem can look very different for synchronous and asynchronous transition sys-
tems.

93

Induced Sync. Transition System

Definition (Induced Sync. Transition System (cont.))

(2) →= (
⋃

p∈P →p) ∪ (
⋃

p,q∈P:p 6=q →pq), where
• →pi is the set of pairs

(cp1 , . . . , cpi , . . . , cpN), (cp1 , . . . , c
′
pi
, . . . , cpN)

for which (cpi , c
′
pi

) ∈`ipi
• →pipj is the set of pairs

(. . . , cpi , . . . , cpj , . . .)(. . . , c ′pi , . . . , c
′
pj
, . . .)

for which there is a message m ∈ M such that

(cpi ,m, c ′pi) ∈`
s
pi

and (cpj ,m, c ′pj) ∈`
r
pj

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 107 / 295

94

Events, Causality, Logical Clocks

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 108 / 295

95

Events and Causal Order

• A transition a is said to occur earlier than transition b if a occures in the sequence
of transitions before b

• An execution E = (γ0, γ1, . . .) can be associated with a sequence of events
Ē = (e0, e1, . . .), where ei is the event by which the configuration changes from γi
to γi+1

• Events of a distributed execution can sometimes be interchanged without affecting
the later configurations of the execution

• The notion of time as a total order on the events is not suitable and instead the
notion of causal dependence is introduced

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 109 / 295

96

Dependence of Events

Theorem
Let γ be a configuration of a distributed system (with asynchronous message passing)
and let ep and eq be events of different processes p and q, both applicable in γ. Then
ep is applicable in eq(γ), eq is applicable in ep(γ), and ep(eq(γ)) = eq(ep(γ)).

• Let ep and eq be two events that occur consecutively in an execution. The premise
of the theorem applies to these events except in the following two cases:

a) p = q or
b) ep is a send event, and eq is the corresponding receive event

• The fact that a particular pair of events cannot be exchanged is expressed by
saying that there is a causal relation between these two events

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 110 / 295

The theorem requires that p and q are different. If ep is a send event and eq is a receive event, then both
event cannot be applicable in γ. (There is no way to receive a message that has not yet been sent.)

97

Causal Order

Definition (causal order)

Let E be an execution. The relation ≺, called the causal order, on the events of the
execution is the smallest relation that satisfies the following requirements:

(1) If e and f are different events of the same process and e occurs before f , then
e ≺ f .

(2) If s is a send event and r the corresponding receive event, then s ≺ r .

(3) ≺ is transitive.

• Let a � b denote (a ≺ b ∨ a = b); the relation � is a partial order

• There may be events a and b for which neither a ≺ b nor b ≺ a holds; such events
are said to be concurrent, notation a | b

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 111 / 295

Understanding the causal order between events in a distributed system is crucial for reasoning about
the system. Lamport introduced the causal order relation in his famous paper as the “happened-before”
relation between events [14].

98

Computations

• The events of an execution can be reordered in any order consistent with the causal
order, without affecting the result of the execution

• Such a reordering of the events gives rise to a different sequence of configurations,
but this execution will be regarded as equivalent to the original execution

• Let E = (γ0, γ1, . . .) be an execution with an associated sequence of events
Ē = (e0, e1, . . .), and assume f is a permutation of Ē

• The permutation (f0, f1, . . .) of the events of E is consistent with the causal order if
fi � fj implies i ≤ j , i.e., if no event is preceded in the sequence by an event it
causally precedes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 112 / 295

99

Equivalent Executions

Theorem
Let f = (f0, f1, . . .) be a permutation of the events of E that is consistent with the
causal order of E . Then f defines a unique execution F starting in the initial
configuration of E . F has as many events as E , and if E is finite, the last configuration
of F is the same as the last configuration of E .

• If the conditions of this theorem apply, we say that E and F are equivalent
executions, denoted as E ∼ F

• A global observer, who has access to the actual sequence of events, may distinguish
between two equivalent executions

• The processes, however, cannot distinguish between two equivalent executions

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 113 / 295

100

Computation

Definition (computation)

A computation of a distributed algorithm is an equivalence class under ∼ of executions
of the algorithm.

• It makes no sense to speak about the configurations of a computation, because
different executions of the computation may not have the same configurations

• It does make sense to speak about the collection of events of a computation,
because all executions of the computation consist of the same set of events

• The causal order of the events is defined for a computation

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 114 / 295

101

Logical Clocks

Definition (clock)

A clock is a function Θ from the set of events Ē to an ordered set (X , <) such that for
a, b ∈ Ē

a ≺ b ⇒ Θ(a) < Θ(b).

Definition (lamport clock)

A Lamport clock is a clock function ΘL which assigns to every event a the length k of
the longest sequence (e1, . . . , ek) of events satisfying e1 ≺ e2 ≺ . . . ≺ ek = a.

• A clock function Θ expresses causal order, but does not necessarily express
concurrency

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 115 / 295

102

Lamport Clocks

• The value of ΘL can be computed as follows:
• ΘL(a) is 0 if a is the first event in a process
• If a is an internal event or send event, and a′ the previous event in the same

process, then
ΘL(a) = ΘL(a′) + 1

• If a is a receive event, a′ the previous event in the same process, and b the send
event corresponding to a, then

ΘL(a) = max(ΘL(a′),ΘL(b)) + 1

• The per process clock value may be combined with a process identifier to obtain a
globally unique value

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 116 / 295

103

Lamport Clock Example

e1,1 e1,2 e1,4e1,3 e1,5

e2,1 e2,3e2,2

e3,1 e3,2 e3,3 e3,5 e3,6e3,4

P1:

P2:

P3:

2 5 6 7

1 2

1

1 3 4 5 6 7

7

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 117 / 295

Note that Lamport Clock values always identify the longest sequence (e1, . . . , ek) of events satisfying
e1 ≺ e2 ≺ . . . ≺ ek.

Events can be moved on the time line as long as the causal order is not changed.

104

Vector Clocks

Definition (vector clocks)

A vector clock for a set of N processes is a clock function ΘV which is defined by
ΘV (a) = (a1, . . . , aN), where ai is the number of events e in process pi for which e ≺ a.

• Vectors are naturally ordered by the vector order:

(a1, . . . an) ≤V (b1, . . . bn)⇐⇒ ∀i (1 ≤ i ≤ b) : ai ≤ bi

• Vector clocks can express concurrency since concurrent events are labelled with
incomparable clock values:

a ≺ b ⇐⇒ ΘV (a) < ΘV (b)

• Vector clocks require more space in the messages, but element compression can
reduce message overhead

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 118 / 295

105

Vector Clock Example

e1,1 e1,2 e1,4e1,3 e1,5

e2,1 e2,3e2,2

e3,1 e3,2 e3,3 e3,5 e3,6e3,4

P1:

P2:

P3:

(2,0,0) (3,2,3) (4,2,3) (5,2,3)

(0,1,0) (0,2,0)

(1,0,0)

(0,0,1) (0,2,4) (0,2,5) (0,2,6)

(4,3,3)

(0,2,3)(0,2,2)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 119 / 295

Note that the sum of the components of the Vector Clock values identifies the number of all events
causally preceeding the current event, including the current event.

There are even more complex clocks. Further details can be found in a summary paper by M. Raynal
[17].

106

Stable Properties and Snapshots

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 120 / 295

107

Properties of Computations

• It is often required to analyze certain properties of a computation.

• An important class of properties are so called stable properties. A property P of
configurations is stable if

P(γ) ∧ γ ; δ ⇒ P(δ).

• If a computation ever reaches a configuration γ for which P holds true, P remains
true in every configuration δ from then on.

• Examples of stable properties: termination, deadlock, loss of tokens, non-reachable
objects in dynamic memory structures, . . .

• Stable properties can be analyzed off-line by taking a snapshot of a computation.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 121 / 295

108

Snapshots Preliminaries

• Let C be a computation of a distributed system consisting of a set of P processes.
The set of events of the computation C is denoted Ev .

• The local computation of process p consists of a sequence c
(0)
p , c

(1)
p , . . . of process

states, where c
(0)
p is an initial state of process p.

• The transition from state c
(i−1)
p to c

(i)
p is marked by the occurrence of an event e

(i)
p .

• It follows that Ev =
⋃

p∈P{e
(1)
p , e

(2)
p , . . .}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 122 / 295

109

Snapshot Approach (1/2)

• Goal: construct a system configuration composed from local states (snapshot
states).

• The local state c∗p of a process p is called its local snapshot state.

• If the snapshot state is c
(i)
p , i.e., p takes its snapshot between e

(i)
p and e

(i+1)
p , the

events e
(j)
p with j ≤ i are called preshot events of p and the event with j > i are

called postshot events of p

• A (global) snapshot consists of a snapshot state c∗p for each process p; we write
S∗ = (c∗p1 , . . . , c

∗
pN

)

• In time diagrams, local snapshots are depicted by open circles.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 123 / 295

110

Snapshot Approach (2/2)

• If a channel from p to q exists, then the state c
(i)
p of p includes a list sent

(i)
pq of all

messages that p has sent to q in the events e
(1)
p through e

(i)
p .

• The state c
(i)
q of q includes a list rcvd

(i)
pq of all messages that q has received from p

in the events e
(1)
p through e

(i)
p .

• The state of channel pq is defined to be the set of messages sent by p (according
to c∗p) but not received by q (according to c∗q); that is sent∗pq \ rcvd∗pq.

• The simplification ensures that the channel state is recorded in the local snapshots.
Note that this assumption can be lifted later on to avoid the storage of all
messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 124 / 295

111

Anomalies

7

e1,1 e1,2 e1,4e1,3 e1,5

e2,1 e2,3e2,2

e3,1 e3,2 e3,3 e3,5 e3,6e3,4

P1:

P2:

P3:

2 5 6 7

1 2

1

1 3 4 5 6 7

• Anomalies exist if rcvd∗pq is not a subset of sent∗pq
• Anomalies occur if a post-shot message in the snapshot of one process is a pre-shot

message in the snapshot of another process.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 125 / 295

112

Feasibile Snapshot and Cuts

Definition (feasible snapshot)

Snapshot S∗ is feasible if for each two (neighbor) processes p and q, rcvd∗pq ⊆ sent∗pq.

Definition (cut)

A cut of Ev is a set L ⊆ Ev such that

e ∈ L ∧ e ′ ≺p e ⇒ e ′ ∈ L.

Cut L2 is said to be later than L1 if L1 ⊆ L2.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 126 / 295

113

Consistent Cuts and Meaningful Snapshot

Definition (consistent cut)

A consistent cut of Ev is a set L ⊆ Ev such that

e ∈ L ∧ e ′ ≺ e ⇒ e ′ ∈ L.

Definition
Snapshot S∗ is meaningful in computation C if there exists an execution E ∈ C such
that S∗ is a configuration of E .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 127 / 295

114

Feasible vs. Meaningful Snapshots vs. Consistent Cuts

Theorem
Let S∗ be a snapshot and L the cut implied by S∗. The following statements are
equivalent.

(1) S∗ is feasible.

(2) L is a consistent cut.

(3) S∗ is meaningful.

• The proof shows that (1) implies (2), (2) implies (3), and (3) implies (1). See
Gerard Tel [?] for the details.

• Note that feasibility is a local property between neighbors, while meaningfulness is
a global property of the snapshot.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 128 / 295

115

Chandy-Lamport Algorithm

1: procedure initiate
2: if ¬takenp then
3: record local state()
4: takenp ← true
5: for ∀q ∈ Neighp do
6: send(q,marker)
7: end for
8: end if
9: end procedure

1: procedure marker-arrived
2: recv(q,marker)
3: if ¬takenp then
4: record local state()
5: takenp ← true
6: for ∀q ∈ Neighp do
7: send(q,marker)
8: end for
9: end if

10: end procedure

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 129 / 295

Every process p has a boolean variable takenp, which is initially set to false. The variable Neighp holds
the set of neighbors of p.

The Chandy-Lamport snapshot algorithm requires the exchange of 2N messages with N processes.
For the original publication, see [5].

116

Chandy-Lamport Properties

• The channels are assumed to be first in – first out (FIFO), i.e., they do not reorder
messages.

• Processes inform each other about snapshot construction by sending special marker
messages.

• The algorithm must be initiated by at least one process, but it works correctly if
initiated by an arbitrary non-empty set of processes.

• The algorithm of Chandy-Lamport computes a meaningful snapshot within finite
time after its initialization by at least one process.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 130 / 295

117

Construction of the Channel State

Lemma
In a feasible snapshot, send∗pq \ rcvd∗pq equals the set of messages sent by p in a preshot
event and received by q in a postshot event if the channels have FIFO property.

• Chandy-Lamport Algorithm:
• All preshot messages from p to q are received before the marker message sent from
p to q.

• Moreover, only preshot messages are received before the marker.
• The state of the channel pq is the collection of messages received by q after

recording its state but before the receipt of p’s marker message.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 131 / 295

118

Chandy-Lamport Snapshot Example

messages r to q

q:

p:

r:

messages q to p

messages r to p

messages q to r

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 132 / 295

We have three processes p, q, and r. Process p initiates the snapshot and sends a marker to q and
r after taking a local snapshot. When the processes q and r receive the marker, they take their local
snapshots and they inform the other processes by sending the marker again.

After taking a local snapshot, the processes have to record messages received from processes that did
not initiate their local snapshot until the second markers have arrived.

Discussion points:

• What happens if p’s first marker to r arrives after q’s marker has arrived at r?

• Which messages are recorded by which process?

• With three processes, we have six channels (p→ q, p→ r, q → p, q → r, r → p, r → q). Why is it
sufficient to record messages only from four channels?

119

Stable Property Detection Algorithm

1: procedure stable-property-detection(P)
2: repeat
3: γ ← take global snapshot()
4: detected ← P(γ)
5: if ¬detected then
6: suspend some time()
7: end if
8: until detected
9: end procedure

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 133 / 295

One way to detect a stable property P is to take global snapshots and to evaluate P on them until P
becomes true. While this is a generic solution for arbitrary stable properties P , it is possible to find
more efficient solutions for specific properties. (Remember that recording local snapshots is usually an
expensive operation.)

120

Fault Tolerance and Broadcasts

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 134 / 295

121

Fault Models

• Initially dead: The fault that causes a component to not participate during the
lifetime of the system.

• Crash fault: The fault causes the component to halt or to lose its internal state.

• Omission fault: A fault that causes a component to not respond to some input.

• Timing fault: A fault that causes a component to respond either too early or too
late.

• Byzantine fault: An arbitrary fault which causes the component to behave in a
totally arbitrary manner during failure.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 135 / 295

It is important to be explicity about the fault model. A distributed algorithm may be robust against some
faults but not robust against some other faults.

122

Hierarchy of Fault Models

initially dead

byzantine faults

omission faults

crash faults

=⇒ Incorrect computation faults are a subset of Byzantine faults where a component
does not have any timing fault, but simply produces an incorrect output in
response to the given input.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 136 / 295

Note that an omission fault is a special case of a timing fault.

123

Benign vs. Malign Failures

• Initially dead processes and crashes are called benign failure types.

• Byzantine failures which are not benign failures are called malign failure types.

• For several distributed problems, it turns out that a collection of N processes can
tolerate < N

2
benign failures.

• For several distributed problems in an asynchronous system, it turns out that a
collection of N processes can tolerate < N

3
malign failures.

• For several distributed problems in a synchronous system, a higher level of
robustness can be achieved, especially if messages can be signed.

=⇒ Note that synchronous systems allow for timing errors which do not exist in
asynchronous systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 137 / 295

It can be shown that the decision problem cannot be solved in an asynchronous distributed system if
there is at least one crash process.

124

Approaches to Fault-Tolerance

• Robust Algorithms
• Correct processes should continue behaving correctly in spite of failures
• Tolerate failures by using replication and voting
• Never wait for all processes because processes can fail

• Stabilizing Algorithms (sometimes Self-stabilizing Algorithms)
• Correct processes might be affected by failures, but will eventually become correct
• The system can start in any state (possibly faulty), but should eventually resume

correct behavior

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 138 / 295

There has been quite some interest in stabilizing algorithms. The firefly algorithm (usually shown during
orientation week) is an example of a self-stabilizing algorithm.

For robust algorithms, a fairly general problem is the distributed decision problem.

125

Robust Decision Algorithms

• Robust algorithms typically try to solve some decision problem where each correct
process irreversibly decides.

• Three requirements on decision problems:
• Termination: All correct processes eventually decide
• Consistency: Constraint on different processes decisions:

Consensus problem: every decide should be equal
Election: Every decide except one should be the same

• Non-triviality: Fixed trivial outputs (e.g., always decide “yes”) are excluded;
processes should need to communicate to be able to solve the problem

• Application: All processes in a distributed databases must agree whether to commit
or abort a transaction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 139 / 295

126

Reliable Broadcasts

• Reliable Broadcast:
• All correct processes deliver the same set of messages
• The set only contains messages from correct processes

• Atomic Broadcast (reliable)
• A reliable broadcast where it is guaranteed that every process receives its messages

in the same order as all the other processes

• Given a reliable atomic broadcast, we can implement a consensus algorithm
• Let every node broadcast either 0 or 1
• Decide on the first number that is received
• Since every correct process will receive the messages in the same order, they will all

decide on the same value

• Solving Reliable Atomic Broadcast is equivalent to solving consensus

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 140 / 295

127

Broadcast System Model

P1

layer

transport

layer

receive()

deliver()

Pn

send()

broadcast()

communication network

Pi

receive()

deliver()

multicast

• Important distinction between send() / receive() and broadcast() /
deliver() primitives

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 141 / 295

128

Reliable Broadcast

Definition
A reliable broadcast is a broadcast which satisfies the following three properties:

1. Validity : If a correct process broadcasts a message m, then all correct processes
eventually deliver m.

2. Agreement: If a correct process delivers a message m, then all correct processes
eventually deliver m.

3. Integrity : For any message m, every correct process delivers m at most once and
only if m was previously broadcast by the sender of m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 142 / 295

129

FIFO Broadcast

Example

x := x+1x := 2x

P3

P2

P1

x=3

x=3

x=3 x=6

x=6 x=7

x=7

x=4 x=8

Definition
A broadcast is called a FIFO broadcast if the following condition holds: If a process
broadcasts a message m before it broadcasts a message m′, then no correct process
delivers m′ unless it has previously delivered m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 143 / 295

130

Causal Broadcast

Example

x := x+1

x := 2x

x=3

x=3

x=3 x=4

x=4 x=8

x=8

x=6 x=7

P3

P2

P1

Definition
A broadcast is called a causal broadcast if the following condition holds: If a broadcast
of a message m causally precedes the broadcast of a message m′, then no correct
process delivers m′ unless it has previously delivered m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 144 / 295

131

Atomic Broadcast

Example

x := x+1

x := 2x

P4

P3

P2

P1

x=3

x=3

x=3 x=6 x=7

x=3

x=4 x=8

x=8x=4

x=7x=6

Definition
A broadcast is called an atomic or totally ordered broadcast if the following condition
holds: If correct processes p and q both deliver message m and m′, then p delivers m
before m′ if and only if q delivers m before m′.
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 145 / 295

132

Broadcast Variants

Causal Order

Reliable

Broadcast Broadcast

Atomic

Broadcast

FIFO

Broadcast

FIFO Atomic

Causal AtomicCausal

Broadcast Broadcast

Total Order

Total Order

Total Order

FIFO OrderFIFO Order

Causal Order

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 146 / 295

133

Communicating Sequential Processes

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 147 / 295

134

CSP Notation: Events, Processes, Alphabet, Prefix

• Events are denoted by lower-case words (coin) or letters a, b, c . . .

• Processes are denoted by upper-case words (VMS) or letters P , Q, R , . . .

• Variables denoting events use lower-case letters x , y , z

• Variables denoting processes use upper-case letters X , Y , Z

• Sets of events are denoted by upper-case letters A, B , C

• The alphabet αP of a process P is the set of events it can react on.

• The process STOP is a process that does nothing, it never engages in any events.

• The process RUN is a process that engages in any event of its alphabet.

• Let x be an event and let P be a process. Then (x → P) describes a process which
first engages in the event x and then behaves as described by P . We adopt the
convention that the prefix x → P is right associative.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 148 / 295

Events are considered to be atomic actions without duration. Actions that take time should be modelled
by a start event and an end event. This is in particular important for actions where other events can
happen while the action is being carried out.

Lets consider a simple vending machine VMS, which provides chocolate (choc) when customers insert
a coin (coin). The alphabet of the process VMS is αVMS = {coin, choc}.
The vending machine VMS consumes a coin before breaking:

(coin→ STOP)

The vending machine VMS serving two customers before breaking:

(coin→ (choc→ (coin→ (choc→ STOP))))

By leaving out the parenthesis, we get the following shorter notation:

(coin→ choc→ coin→ choc→ STOP)

135

Recursion and Choice

• A process description beginning with a prefix is said to be guarded.
• If F (X) is a guarded expression containing the process name X and A is the

alphabet of X , then the equation

X = F (X)

has a unique solution with the alphabet A. The solution of the expression is
denoted as follows:

µX : A • F (X)

• If x and y are distinct events, then

(x → P | y → Q)

describes a process which initially engages in either of the events x or y and then
behaves as either P (if the first event was x) or Q (if the first event was y).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 149 / 295

Consider the a clock with the alphabet αCLOCK = {tick}. A clock that emits a single tick afterwards
behaves exactly like a clock:

CLOCK = (tick → CLOCK)

By substitution, this recursive definition unfolds as shown below:

CLOCK = (tick → CLOCK)

= (tick → (tick → CLOCK))

= (tick → (tick → (tick → CLOCK)))

The clock can be defined using the following expression:

CLOCK = µX : {tick} • (tick → X)

The simple vending machine (which does not break) is defined by:

VMS = µX : {choin, choc} • (coin→ (choc→ X))

A vending machine VMCC serving chocolate or coffee:

VMCC = µX : {coin, choc, coffee} • (coin→ (choc→ X | coffee→ X))

Mutual recursion is possible if all right-hand sides of the equations are guarded and each unknown
process appears exactly once on the left-hand side of one of the equations. Here is an example: A drink
dispenser has a switch to make it dispense either orange or lemon. The switch setting is permanent,
i.e., once set to orange, multiple orange drinks can be obtained.

αDD = αO = αL = {setorange, setlemon, orange, lemon}
DD = (setorange→ O | setlemon→ L)

O = (orange→ O | setlemon→ L | setorange→ O)

L = (lemon→ L | setorange→ O | setlemon→ L)

136

Basic Laws

STOP 6= (d → P) (L1A)

(c → P) 6= (d → Q) if c 6= d (L1B)

(c → P | d → Q) = (d → Q | c → P) (L1C)

(c → P) = (c → Q) ≡ P = Q (L1D)

(Y = F (Y)) ≡ (Y = µX • F (X)) if F (X) is a guarded expression (L2)

µX • F (X) = F (µX • F (X)) (L2A)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 150 / 295

137

Traces

• A trace of a process is a finite sequence of symbols recording the events a process
has engaged in up to some moment in time.

• A trace is denoted as a sequence of symbols, separated by commas and enclosed in
angular brackets.

• The empty trace 〈〉 is the shortest trace of every possible process.

• Variables denoting traces are s, t, u

• Variables denoting sets of traces S ,T ,U

• Functions are denoted by f , g , h

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 151 / 295

Possible traces of the VMCC:

〈〉 〈coin, choc, coin, choc〉 〈coin, choc, coin, coffee〉 〈coin, choc, coin〉

138

Trace Catenation

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 152 / 295

139

Trace Restriction

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 153 / 295

140

Trace Head and Tail

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 154 / 295

141

Trace Star

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 155 / 295

142

Trace Ordering

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 156 / 295

143

Trace Length

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 157 / 295

144

Traces of a Process

• The functions traces(P) returns the complete set of all possible traces of process P .

• If s ∈ traces(P), then P/s (P after s) is a process which behaves as P from the
time after P has engaged in all the actions recorded in the trace s.

〈〉 ∈ traces(P) (L6)

s · t ∈ traces(P) =⇒ s ∈ traces(P) (L7)

traces(P) ⊆ (αP)∗ (L8)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 158 / 295

145

Laws of Traces of a Process

traces(STOP) = {〈〉} (L1)

traces(c → P) = {〈〉} ∪ {〈c〉 · t | t ∈ traces(P)} (L2)

traces(c → P | d → Q) = {〈〉} ∪ {〈c〉 · t | t ∈ traces(P)} ∪ {〈d〉 · t | t ∈ traces(Q)}
(L3)

traces(x : B → P(X)) = {〈〉}
⋃

b∈B
{〈b〉 · t | t ∈ traces(P(b))} (L4)

traces(µX : A • F (X)) =
⋃

n≥0
traces(F n(STOP)) (L5)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 159 / 295

146

Laws of Traces of a Process

P/〈〉 = P (L1)

P/(s · t) = (P/s)/t (L2)

(x : B → P(x))/〈c〉 = P(c) if c ∈ B) (L3)

(c → P)/〈c〉 = P (L3A)

traces(P/s) = {t | s · t ∈ traces(P)} if s ∈ traces(P) (L4)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 160 / 295

147

Specification, Satisfaction, Proof

• Let tr to denote an arbitrary trace of a process.

• A specification is a predicate containing free variables over tr .

• If a process P satisfies specification S , we write P sat S .

• The goal is use our laws to proof P sat S .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 161 / 295

148

Satisfaction and Proof Laws

TBD

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 162 / 295

149

Interaction of Processes

• Two processes P and Q with the same alphabet (αP = αQ) interact in a lock-step
way, denoted as P ‖ Q.

• Interaction means that both processes follow the same set of events.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 163 / 295

Consider the process VMCC that can serve chocolate or coffee. A greedy customer is taking a choco-
late or a coffee if it is for free. If the greedy customer has to pay, then chocolate is preferred.

A = {coin, choc, coffee}
VMCC = µX : A • (coin→ (choc→ X | coffee→ X))

GRC = µX : A • (coffee→ GRC | choc→ GRC | coin→ choc→ GRC

WhenGRC and VMCC interact, thenGRC has no other choice than paying for chocolate since VMCC
will never dispense coffee or chocolate without first inserting a coin. Hence, we get the following inter-
action result:

(GRC ‖ VMCC) = µX : A • (coin→ choc→ X)

Consider a generous customer GEC who leaves an extra coin after picking up a coffee:

GEC = µX : A • (coin→ coffee→ coin→ X)

When the GEC and VMCC interact, then GEC will pick a coffee and leave a coin but when GEC
returns the system gets deadlocked since the VMCC expects to dispense a drink while GEC expects
to insert another coin.

(GEC ‖ VMCC) = µX : A • (coin→ coffee→ coin→ STOP)

150

Interaction Laws

P ‖ Q = Q ‖ P (L1)

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R (L2)

P ‖ STOP = STOP (L3A)

P ‖ RUN = P (L3B)

(c → P) ‖ (c → Q) = (c → (P ‖ Q)) (L4A)

(c → P) ‖ (d → Q) = STOP if c 6= d (L4B)

(x : A→ P(x)) ‖ (y : B → Q(y)) = (z : (A ∩ B)→ (P(z) ‖ Q(z))) (L4)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 164 / 295

Example usage of the laws:

A = {a, b, c}
P = (a→ b→ P | b→ P)

Q = (a→ (b→ Q | c→ Q))

(P ‖ Q) = a→ ((b→ P) ‖ (b→ Q | c→ Q))

= a→ (b→ (P ‖ Q))

= µX : A • (a→ b→ X)

Note that choices that do not “match” are dropped and that we finally can replace P ‖ Q with X since
the recursion is guarded.

151

Concurrency of Processes

• Two processes P and Q with different alphabets (αP 6= αQ) can execute
concurrently, denoted as P ‖ Q.

• Events that are both in αP and αQ require simultaneous execution by P and Q.

• Events in αP that are not in αQ are of no concern for Q, and events in αQ that
are not in αP are of no concern for P .

• The set of events that is possible for the concurrent combination of P and Q is
given by

α(P ‖ Q) = αP ∪ αQ

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 165 / 295

Consider a customer CUST who prefers coffee. He utters a curse when there is only chocolate.

αCUST = {coin, choc, curse, coffee}
CUST = (coin→ (coffee→ CUST | curse→ choc→ CUST))

Further, consider a vending machine NVM that produces a clink sound after inserting a coin and a
clunk sound on completion of the transaction.

αNVM = {coin, clink, choc, clunk}
NVM = (coin→ clink → choc→ clunk → NVM)

The combination of the two processes gives us a customer who always utters a curse. But we do not
know whether this happens before or after the clink sound.

α(NVM ‖ CUST) = {coin, choc, curse, clink, clunk, coffee}
(NVM ‖ CUST) = µX • (coin→ (clink → curse→ choc→ clunk → X

| curse→ clink → choc→ clunk → X))

152

Concurrency Laws

Let a ∈ (αP \ αQ), b ∈ (αQ \ αP), {c , d} ⊆ (αP ∩ αQ):

P ‖ Q = Q ‖ P (L1)

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R (L2)

P ‖ STOP = STOP (L3A)

P ‖ RUN = P (L3B)

(c → P) ‖ (c → Q) = (c → (P ‖ Q)) (L4A)

(c → P) ‖ (d → Q) = STOP if c 6= d (L4B)

(a→ P) ‖ (c → Q) = a→ (P ‖ (c → Q)) (L5A)

(c → P) ‖ (b → Q) = b → ((c → P) ‖ Q) (L5B)

(a→ P) ‖ (b → Q) = (a→ (P ‖ (b → Q)) | b → ((a→ P) ‖ Q)) (L6)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 166 / 295

153

Change of Symbols

• Sometimes it is convenient to change the symbols of a process or to derive another
identical independent process by changing symbols.

• Let f be an injective function f : αP 7→ A. We define the process f (P) which
engaged in the event f (c) whenever P would engage in c :

αf (P) = f (αP)

traces(f (P)) = {f ∗(s) | s ∈ traces(P)}

• f ∗ : A 7→ B is derived from f : A 7→ B and it maps a sequence of symbols in A∗ to
a sequence in B∗ by applying f to each element of the sequence.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 167 / 295

154

Labeled Processes

• Changing symbols allows us to create collections of similar processes which operate
concurrently.

• We can use the technique to create labeled processes. A process P labeled by l is
denoted by l : P . It engages in l .x whenever P would engage in x .

• The function defining l : P is fl(x) = l .x for all x ∈ αP .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 168 / 295

Suppose you have two vending machines standing side by side:

(left : VMCC) ‖ (right : VMCC)

155

Change of Symbols Laws

We will use f (B) = {f (x) | x ∈ B}, f −1 denotes the inverse of f , f ◦ g is the
composition of f and g , f ∗ as defined above.

f (STOP) = STOP (L1)

f (x : B → P(x)) = (y : f (B)→ f (P(f −1(y)))) (L2)

f (P ‖ Q) = f (P) ‖ f (Q) (L3)

f (µX : •F (X)) = (µY : f (A) • f (F (f −1(Y)))) (L4)

f (g(P)) = (f ◦ g)P (L5)

traces(f (P)) = {f ∗(s) | s ∈ traces(P)} (L6)

f (P)/f ∗(s) = f (P/s) (L7)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 169 / 295

The inverse function f−1 in L2 (and L4) converts y ∈ f(B) (respectively Y ∈ f(A)) into a symbol of B
(respectively A). Since we need f−1 here, f has to be injective.

156

Non-deterministic Choice

• If P and Q are processes with the same alphabet (αP = αQ), then the notation

P u Q

denotes a process which behaves either like P or like Q.

• By construction, we have α(P u Q) = αP = αQ.

• The decision whether the process P u Q behaves like P or Q in made arbitrarily
without knowledge or control by the environment.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 170 / 295

157

Non-deterministic Choice Laws

P u P = P (L1)

P u Q = Q u P (L2)

P u (Q u R) = (P u Q) u R (L3)

x → (P u Q) = (x → P) u (x → Q) (L4)

(x : B → (P(x) u Q(x))) = (x : B → P(x)) u (x : B → Q(x)) (L5)

P ‖ (Q u R) = (P ‖ Q) u (P ‖ R) (L6)

(P u Q) ‖ R = (P ‖ R) u (Q ‖ R) (L7)

f (P u Q) = f (P) u f (Q) (L8)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 171 / 295

158

General Choice

• If P and Q are processes with the same alphabet (αP = αQ), then the notation

P �Q

denotes a process which behaves either like P or like Q.

• By construction, we have α(P �Q) = αP = αQ.

• The decision whether the process P �Q behaves like P or Q can be made by the
environment. If the first action is only available for P , then P will be executed. If
the first action is only available in Q, then Q will be executed. If the first action is
possible in both P and Q, then the choice becomes non-deterministic.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 172 / 295

In the special case where no initial event of P is possible in Q, the general choice operator � is the
same as the choice operator |:

(c→ P)� (d→ Q) = (c→ P | d→ Q) if c 6= d

In the special case where the initial events of P and Q are the same, the general choice operator � is
the same as the non-deterministic choice operator u:

(c→ P � c→ Q) = (c→ P u c→ Q)

159

General Choice Laws

P �P = P (L1)

P �Q = Q �P (L2)

P � (Q �R) = (P �Q)�R (L3)

P � STOP = P (L4)

(x : A→ P(x))� (y : B → Q(y)) =

(z : (A ∪ B)→ P(z)) z ∈ (A \ B)

(z : (A ∪ B)→ Q(z)) z ∈ (B \ A)

(z : (A ∪ B)→ (P(z) u Q(z))) z ∈ (A ∩ B)

(L5)

P � (Q u R) = (P �Q) u (P �R) (L6)

P u (Q �R) = (P u Q)� (P u R) (L7)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 173 / 295

160

Refusals

• Let X be a set of events which are offered initially by the environment of P . If P
can deadlock on its first step when placed in this environment, then X is a refusal
of P . The set of all such refusals of P is denoted refusals(P).

• If P is deterministic, then

(X ∈ refusals(P)) ≡ (X ∩ P0 = {})

where P0 = {x | 〈x〉 ∈ traces(P)}.
• This can be generalized since the condition also applies to other steps of P . P is

deterministic if

∀s : traces(P) • (X ∈ refusals(P/s) ≡ (X ∩ (P/s)0 = {})

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 174 / 295

161

Refusals Laws

refusals(STOP) = all subsets of the alphabet (L1)

refusals(c → P) = {X | X ⊆ (αP \ {c})} (L2)

refusals(x : B → P(x)) = {X | X ⊆ (αP \ B)} (L3)

refusals(P u Q) = refusals(P) ∪ refusals(Q) (L4)

refusals(P �Q) = refusals(P) ∩ refusals(Q) (L5)

refusals(P ‖ Q)− {X ∪ Y | X ∈ refusals(P) ∧ Y ∈ refusals(Q)} (L6)

refusals(f (P)) = {f (X) | X ∈ refusals(P)} (L7)

X ∈ refusals(P) =⇒ X ⊆ αP (L8)

{} ∈ refusals(P) (L9)

(X ∪ Y) ∈ refusals(P) =⇒ X ∈ refusals(P) (L10)

X ∈ refusals(P) =⇒ (X ∪ {x}) ∈ refusals(P) ∨ 〈x〉 ∈ traces(P) (L11)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 175 / 295

162

Concealment

• After constructing processes, we may want to conceal some internal events that
were useful for the construction but which are irrelevant for the environment.

• If C is a finite set of events, then P \ C is a process that behaves like P , except
that each occurrence of any event in C is concealed.

• Obviously, we want α(P \ C) = (αP) \ C .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 176 / 295

The noisy vending machine NVM may be placed in a soundproof box and we obtain a silent vending
machine:

SVM = NVM \ {clink, clunk}

The mutual interactions of two concurrent processes can be seen as internal workings of the resulting
process. Hence, it is usually the symbols in the intersection of the alphabets of the two processes that
need to be concealed.

163

Interleaving

• If P and Q are processes with the same alphabet (αP = αQ), then the notation

P |||Q

denotes concurrent execution of P and Q where common events are not processed
simultaneously. Each action of the system is an action of exactly one of the
processes.

• If one of the processes cannot engage in the action, then it must have been the
other one.

• If both processes could have engaged in the same action, then the choice between
them is non-deterministic.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 177 / 295

A vending machine that will accept up to two coins before dispensing up to two chocolates:

VMS2 = (VMS |||VMS)

164

Communication

• A communication event is described by a pair c .v where c is the name of the
channel on which the communication takes place and v is the value of the message
which passes.

• The set of all messages which a process P can communicate on channel c is
defined by:

αc(P) = {v | c .v ∈ αP}
• The functions channel(c .v) = c and message(c .v) = v provide us with the channel

c and the message v of the communication event c .v .
• A process which writes v to c and then behaves list P is denoted as:

(c!v → P) = (c .v → P)

• A process which receives x on c and then behaves like P(x) is denoted as:

(c?x → P(x) = (y : {y : channel(y) = c} → P(message(y)))

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 178 / 295

Channels are used for communication in only one direction and between only two processes.

If P and Q are two processes and c is an output channel of P and an input channel of Q, then the
composition (P ‖ Q) will have communication on c on each occasion where P outputs a message and
Q simultaneously inputs that message.

Example:

αleft(COPY) = αright(COPY)

COPY = µX • (left?x→ right!x→ X)

Example:

αleft(DOUBLE) = αright(DOUBLE) = N

DOUBLE = µX • (left?x→ right!(x+ x)→ X)

165

Communication Choice

• Processes may need to communicate with a subset of a set of channels. To support
this, the choice notation is adapted to channel names.

• If c and d are distinct channel names, then

(c?x → P(x) | d?y → Q(y))

denotes a process which initially inputs x on c and then behaves like P(x) or
initially inputs y on d and then behaves like Q(y).

• The choice is determined by the channel that is ready first.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 179 / 295

Example:

αleft1(MERGE) = αleft2(MERGE) = αright(MERGE)

MERGE = (left1?x→ right!x→MERGE | left2?x→ right!x→MERGE)

Example:

BUFFER = P〈〉

P〈〉 = left?x→ P〈x〉

P〈x〉·s = (left?y → P〈x〉·s·〈y〉 | right!x→ Ps)

Example:

STACK = P〈〉

P〈〉 = (empty → P〈〉 | left?x→ P〈x〉)

P〈x〉·s = (right!x→ Ps | left?y → P〈y〉·〈x〉·s)

166

Communication Laws

(c!v → P) ‖ (c?x → Q(x)) = c!v → (P ‖ Q(v)) (L1)

((c!v → P) ‖ (c?x → Q(x))) \ C = (P ‖ Q(v)) \ C with (L2)

C = {c .v | v ∈ αc}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 180 / 295

Note that a receiver is prepared to receive any value. Hence, communication is controlled by the sending
process. Law L1 says that the receive event does not really matter, it is not observable from the outside.
Law L2 says that the internal communication between two processes can be concealed.

167

Chaining (Pipes)

• Consider processes that have an input channel left and an output channel right and
no other channels.

• Two such processes P and Q can be chained together so that the right channel of
P is the left channel of Q and that the communication over the joint internal
channel is concealed.

• The result of such a construction is denoted as P � Q.

• Chaining requires that certain constraints on the alphabet are met:

α(P � Q) = αleft(P) ∪ αright(Q)

αright(P) = αleft(Q)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 181 / 295

Chaining is a popular mechanism in operating systems (e.g., Unix pipes).

168

Chaining Laws

P � (Q � R) = (P � Q)� R (L1)

(right!v → P)� (left?y → Q(y)) = P � Q(v) (L2)

(right!v → P)� (right!w → Q) = right!w → ((right!v → P)� Q) (L3)

(left?x → P(x)� (left?y → Q(y)) = left?x → (P(x)� (left?y → Q(y))) (L4)

(left?x → P(x))� right!w → Q) = (left?x → (P(x)� (right!w → Q)

| right!w → ((left?x → P(x))� Q)) (L5)

(left?x → P(x))� R � right!w → Q) = (left?x → (P(x)� R � (right!w → Q)

| right!w → ((left?x → P(x))� R � Q)) (L6)

R � (right!w → Q) = right!w → (R � Q) (L7)

(left?x → P(x))� R = left?x → (P(x)� R) (L8)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 182 / 295

Laws L3 and L4 enforce that external communication has precedence. L5 handles the case where both
processes can engage in external communication. L6 extends this to the situation where additional
processes exist in the chain.

Laws L7 and L8 are concerned with a chain where all processes start with output to the right or where
all processes start with input from the left.

169

Part IV

Cryptography

This part introduces basic concepts of cryptography. The goal is to cover a minimum that is needed
to understand how cryptography can be used later on to secure communication protocols or to more
generally protect information. The material focuses on some currently widely used techniques but it is
clear that cryptographic mechanisms change over time and hence some of the material may be more
of a historic record in some 10-20 years from now.

170

Cryptography Primer

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 184 / 295

171

Try to read the following text. . .

Jrypbzr gb Frpher naq Qrcraqnoyr Flfgrzf!

W!eslmceotmsey St oe lSbeacdunreep eaDn d

J!rfyzprbgzfrl Fg br yFornpqhaerrc rnQa q

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 185 / 295

The first line of ciphertext has been produced using the well-known ROT13 algorithm, a simple letter
substitution cipher that replaces a letter with the 13th letter after it, in the alphabet. Given the 26
character basic Latin alphabet, ROT13 has the nice property that msg = ROT13(ROT13(msg)). ROT13
became popular in newsgroups of the 1980s in order to hide potentially offensive content. Applying
ROT13 to the ciphertext

Jrypbzr gb Frpher naq Qrcraqnoyr Flfgrzf!

gives us the following cleartext message:

Welcome to Secure and Dependable Systems!

The second line of ciphertext has been produced by a simple permutation of the cleartext. By reading
every uneven character and afterwards all remaining characters backwards, the ciphertext

W!eslmceotmsey St oe lSbeacdunreep eaDn d

turns into the following cleartext:

Welcome to Secure and Dependable Systems!

With this, it probably is easy to guess how the last line of ciphertext has been constructed: By applying
both the ROT13 substitution and the permutation. This turns the ciphertext

J!rfyzprbgzfrl Fg br yFornpqhaerrc rnQa q

into the cleartext:

Welcome to Secure and Dependable Systems!

172

Terminology (Cryptography)

• Cryptology subsumes cryptography and cryptanalysis:
• Cryptography is the art of secret writing.
• Cryptanalysis is the art of breaking ciphers.

• Encryption is the process of converting plaintext into an unreadable form, termed
ciphertext.

• Decryption is the reverse process, recovering the plaintext back from the ciphertext.

• A cipher is an algorithm for encryption and decryption.

• A key is some secret piece of information used as a parameter of a cipher and
customizes the algorithm used to produce ciphertext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 186 / 295

It is important that the security of a cryptosystem rests on the secrecy of the keys and not on the secrecy
if the algorithms. The algorithms of good cryptosystems should be publically known and withstand any
attempts to break them.

173

Cryptosystem

Definition (cryptosystem)

A cryptosystem is a quintuple (M ,C ,K ,Ek ,Dk), where

• M is a cleartext space,

• C is a chiffretext space,

• K is a key space,

• Ek : M → C is an encryption transformation with k ∈ K , and

• Dk : C → M is a decryption transformation with k ∈ K .

For a given k and all m ∈ M , the following holds:

Dk(Ek(m)) = m

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 187 / 295

This definition is not yet complete. A cryptosystems must statisfy additional requirements since we do
not want simple functions that are easy to revert.

174

Cryptosystem Requirements

• The transformations Ek and Dk must be efficient to compute.

• It must be easy to find a key k ∈ K and the functions Ek and Dk .

• The security of the system rests on the secrecy of the key and not on the secrecy of
the transformations (algorithms).

• For a given c ∈ C , it is difficult to systematically compute
• Dk even if m ∈ M with Ek(m) = c is known
• a cleartext m ∈ M such that Ek(m) = c .

• For a given c ∈ C , it is difficult to systematically determine
• Ek even if m ∈ M with Ek(m) = c is known
• c ′ ∈ C with c ′ 6= c such that Dk(c ′) is a valid cleartext in M.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 188 / 295

We need to further formalize what “difficult to systematically determine” means. We need to express
this in terms of complexity metrics.

175

Symmetric vs. Asymmetric Cryptosystems

Symmetric Cryptosystems
• Both (all) parties share the same key and the key needs to be kept secret.

• Examples: AES, DES (outdated), Twofish, Serpent, IDEA, . . .

Asymmetric Cryptosystems
• Each party has a pair of keys: one key is public and used for encryption while the

other key is private and used for decryption.

• Examples: RSA, DSA, ElGamal, ECC, . . .

• For asymmetric cryptosystems, a key is a key pair (k , k−1) where k denotes the
public key and k−1 the associated private key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 189 / 295

The openssl command can be used to encrypt and decrypt data using a variety of different cryptosys-
tems. To encrypt and decrypt a file using the symmetric cryptosystem AES in CBC mode with a key
length of 256 bit, one can use the following shell commands:

echo ’Welcome to Secure and Dependable Systems!’ > welcome.txt

openssl aes-256-cbc -in welcome.txt -out message.enc

openssl aes-256-cbc -d -in message.enc -out plaintext.txt

176

Cryptographic Hash Functions

Definition (cryptographic hash function)

A cryptographic hash function H is a hash function that meets the following
requirements:

1. The hash function H is efficient to compute for arbitrary input m.

2. Given a hash value h, it should be difficult to find an input m such that h = H(m)
(preimage resistance).

3. Given an input m, it should be difficult to find another input m′ 6= m such that
H(m) = H(m′) (2nd-preimage resistance).

4. It should be difficult to find two different inputs m and m′ such that
H(m) = H(m′) (collision resistance).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 190 / 295

Cryptographic hash functions are used to compute a fixed size fingerprint, also called a message digest,
of a variable length cleartext (message).

Cryptographic hashes can be computed again with openssl command or using special purpose shell
commands:

echo ’Welcome to Secure and Dependable Systems!’ > welcome.txt

openssl dgst -sha256 welcome.txt

shasum -a 256 welcome.txt

Both commands calculate the hash value of the content of the file welcome.txt using the secure hash
algorithm (SHA) and a hash value length of 256 bit. Note that the binary output is usually presented in
hexadecimal notation (256 bit lead to 64 hexadecimal digits).

177

Digital Signatures

• Digital signatures are used to prove the authenticity of a message (or document)
and its integrity.
• The receiver can verify the claimed identity of the sender.
• The sender can not deny that it did sent the message.
• The receiver can not tamper with the message itself.

• Digitally signing a message (or document) means that
• the sender puts a signature into a message (or document) that can be verified and
• that we can be sure that the signature cannot be faked (e.g., copied from some

other message)

• Digital signatures are often implemented by signing a cryptographic hash of the
original message (or document) since this is usually less computationally expensive

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 191 / 295

178

Usage of Cryptography

• Encrypting data in communication protocols (prevent eavesdropping)

• Encrypting data elements of files (e.g., passwords stored in a database)

• Encrypting entire files (prevent data leakage if machines are stolen or attacked)

• Encrypting entire file systems (prevent data leakage if machines are stolen or
attacked)

• Encrypting backups stored on 3rd party storage systems

• Encrypting digital media to obtain revenue by selling keys (for example pay TV)

• Digital signatures of files to ensure that changes of file content can be detected or
that the content of a file can be proven to originate from a certain source

• Encrypted token needed to obtain certain services or to authorize transactions

• Modern electronic currencies (cryptocurrency)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 192 / 295

Cryptography is in wide-spread usage today and we are often not even aware of its usage. Cryptocur-
rencies like bitcoin and the underlying technology of blockchains have received much attention in the
years 2016 and 2017.

179

Symmetric Encryption Algorithms and Block Ciphers

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 193 / 295

180

Substitution Ciphers

Definition (monoalphabetic and polyalphabetic substitution ciphers)

A monoalphabetic substitution cipher is a bijection on the set of symbols of an
alphabet. A polyalphabetic substitution cipher is a substitution cipher with multiple
bijections, i.e., a collection of monoalphabetic substitution ciphers.

• There are |M |! different bijections of a finite alphabet M .

• Monoalphabetic substitution ciphers are easy to attack via frequency analysis since
the bijection does not change the frequency of cleartext characters in the
ciphertext.

• Polyalphabetic substitution ciphers are still relatively easy to attack if the length of
the message is significantly longer than the key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 194 / 295

Lets represent all data as a number in Zn (e.g., the ASCII character set or a Unicode character set).
Then we can consider monoalphabetic cryptosystems (M = Zn, C = Zn,K = Z, Ek, Dk) with

Ek(m) = (m+ k) mod n

Dk(c) = (c− k) mod n

with m ∈M , c ∈ C, and k ∈ K. This kind of cryptosystem is known as Caesar cipher. Historians believe
that Gaius Julius Caesar used the monoalphabetic substitution cipher with the key k = 3 for the n = 26
latin characters.

The ROT13 cipher is essentially the monoalphabetic substitution cipher with the key k = 13 for the
n = 26 latin characters (applied to lower-case and upper-case characters independently, leaving all
other characters unchanged).

Lets represent all data as a number in Zn (e.g., the ASCII character set or a Unicode character set).
Then we can consider monoalphabetic cryptosystems (M = Zn, C = Zn,K = Zl, Ek, Dk) with

Ek(i,m) = (m+ k(i mod l)) mod n

Dk(i, c) = (c− k(i mod l)) mod n

with m ∈ M , c ∈ C, and ki ∈ K. The position i of the input symbol m in the cleartext (or the input
symbol c in the ciphertext) determines which element of the key vector k = (k0, . . . , kl−1) is used.

The Vinigére cipher splits a message into n blocks of a certain length l and then each symbol of a block
is encrypted using a Caesar cipher with a different key ki depending on the position of the symbol in the
block. The Vinigére cipher, originally invented by Giovan Battista Bellaso in the 16th century, was once
considered to be unbreakable, until Friedrich Kasiski published a general attack in the 19th century.

A notable special case of a polyalphabetic substitution cipher arises when the length of the key equals
the length of the message and the key is only used once. In this case we call the cipher a one-time-pad.

181

Permutation Cipher

Definition (permutation cipher)

A permutation cipher maps a plaintext m0, . . . ,ml−1 to mτ(0), . . . ,mτ(l−1) where τ is a
bijection of the positions 0, . . . , l − 1 in the message.

• Permutation ciphers are also called transposition ciphers.

• To make the cipher parametric in a key, we can use a function τk that maps a key
k to bijections.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 195 / 295

An old permutation cipher is the rail-fence-cipher where a cleartext message is spelled out diagonally
down and up over a number of rows and then read off row-by-row. The key k is the number of rows.
Lets assume k = 4:

W e e a p l t

e m _ S c _ n e e b e s e

l o t _ u e d D n a _ y m !

c o r _ d S s

Weeapltem Sc neebeselot uedDna ym!cor dSs

A more general class of permutation ciphers are route ciphers where the plaintext is written out column-
wise and then read back according to a specific pattern. Using k = 5 and reading row-by-row order:

Wm_rdels!

eeSe_net_

l_e_Dd_e_

ctcaeaSm_

oounpbys_

Wm_rdels!eeSe_net_l_e_Dd_e_ctcaeaSm_oounpbys_

182

Product Cipher

Definition (product cipher)

A product cipher combines two or more ciphers in a manner that the resulting cipher is
more secure than the individual components to make it resistant to cryptanalysis.

• Combining multiple substitution ciphers results in another substitution cipher and
hence is of little value.

• Combining multiple permutation ciphers results in another permutation cipher and
hence is of little value.

• Combining substitution ciphers with permutation ciphers gives us ciphers that are
much harder to break.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 196 / 295

183

Chosen-Plaintext and Chosen-Ciphertext Attack

Definition (chosen plaintext attack)

In a chosen-plaintext attack the adversary can chose arbitrary cleartext messages m and
feed them into the encryption function E to obtain the corresponding ciphertext.

Definition (chosen ciphertext attack)

In a chosen-ciphertext attack the adversary can chose arbitrary ciphertext messages c
and feed them into the decryption function D to obtain the corresponding cleartext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 197 / 295

184

Block Cipher

Definition (block cipher)

A block cipher is a cipher that operates on fixed-length groups of bits called a block.

• A given variable-length plaintext is split into blocks of fixed size and then each
block is encrypted individually.

• The last block may need to be padded using zeros or random bits.

• Encrypting each block individually has certain shortcomings:
• the same plaintext block yields the same ciphertext block
• encrypted blocks can be rearranged and the receiver may not necessarily detect this

• Hence, block ciphers are usually used in more advanced modes in order to produce
better results that reveal less information about the cleartext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 202 / 295

185

Polynomial and Negligible Functions

Definition (polynomial and negligible functions)

A function f : N 7→ R+ is called

• polynomial if f ∈ O(p) for some polynomial p

• super-polynomial if f 6∈ O(p) for every polynomial p

• negligible if f ∈ O(1/|p|) for every polynomial p

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 198 / 295

One can prove the following properties:

• The sum of super-polynomial/polynomial/negligible functions is super-polynomial/polynomial/negligible
again.

• The product of super-polynomial/polynomial/negligible functions is super-polynomial/polynomial/negligible
again.

• A function that is greater/smaller than a super-polynomial/polynomial/negligible function is super-
polynomial/polynomial/negligible again.

186

Polynomial Time and Probabilistic Algorithms

Definition (polynomial time)

An algorithm A is called polynomial time if the worst-case time complexity of A for
input of size n is a polynomial function.

Definition (probabilistic algorithm)

A probabilistic algorithm is an algorithm that may return different results when called
multiple times for the same input.

Definition (probabilistic polynomial time)

A probabilistic polynomial time (PPT) algorithm is a probabilistic algorithm with
polynomial time.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 199 / 295

Fermat’s little theorem states that if p is a prime number, then xp ≡ x (mod p) for any x. This relation is
a necessary but not a sufficient condition for a prime number.

Require: n > 3, k > 0
1: while k 6= 0 do
2: x← random(2, n2) . pick x randomly in [2, n2]
3: if x(n−1) ≡ 1 (mod n) then
4: return 0 . composite
5: end if
6: k ← k − 1
7: end
8: return 1 . probably prime

This algorithm is probablistic:

• It needs randomness to work and may return different values for the same input.

• The results produced by the algorithm are not necessarily correct.

The reasons why we choose x ∈ {2, . . . , n− 2}:
• Values outside Zp are irrelevant because we take them modulo p anyway.

• The values x = 0 and x = 1 are useless because the property anyway holds for them.

• The value x = p− 1 is useless because the property holds anyway if p is odd.

187

One-way Functions

Definition (one-way function)

A function f : 0, 1∗ 7→ 0, 1∗ is a one-way function if and only if f can be computed by a
polynomial time algorithm, but any polynomial time randomized algorithm F that
attempts to compute a pseudo-inverse for f succeeds with negligible probability.

• The existence of such one-way functions is still an open conjecture.

• Their existence would prove that the complexity classes P and NP are not equal.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 200 / 295

One-way functions are super-polynomial hard to invert. Any algorithm A that attempts to guess an
x ∈ {0, 1}n such that y and A(n, y) behave the same way under f suceeds with negligible probability.

Some functions that are commonly believed to be one-way functions are discrete exponentiation and
multiplication. We do not know if there is a polynomial factoring algorithm.

188

Security of Ciphers

• What does it mean for an encryption scheme to be secure?

• Consider an adversary who can pick two plaintexts m0 and m1 and who randomly
receives either E(m0) or E(m1).

• An encryption scheme can be considered secure if the adversary cannot distinguish
between the two situations with a probability that is non-negligibly better than 1/2.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 201 / 295

For further information:

• https://en.wikipedia.org/wiki/Block_cipher

• https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

189

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Electronic Code Book Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 203 / 295

• Encryption parallelizable: Yes

• Decryption parallelizable: Yes

• Random read access: Yes

• Lack of diffusion (does not hide data pattern)

190

Cipher Block Chaining Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 204 / 295

• Encryption parallelizable: No

• Decryption parallelizable: Yes

• Random read access: Yes

The initialization vector does not have to be secret but it needs to be random and it is ideally only used
once. A random number only used once is called a nonce.

The sender needs to communicate the initialization vector needs to the receiver alongside the encrypted
message. (An alternative is for the receiver to discard the first block of data.)

191

Output Feedback Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 205 / 295

• Encryption parallelizable: No

• Decryption parallelizable: No

• Random read access: No

The output feedback mode of operation turns a block cipher into a stream cipher. A stream cipher
is a symmetric key cipher where cleartext symbols are combined with a pseudorandom cipher stream
(keystream). The chained block ciphers generate a keystream and the cleartext is XORed with the keys.
Note that encryption and decryption work in exactly the same way in output feedback mode.

192

Counter Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 206 / 295

• Encryption parallelizable: Yes

• Decryption parallelizable: Yes

• Random read access: Yes

The counter mode improves one of the shortcomings of output feedback mode, namely that it is se-
quential and does not support random access.

193

Substitution-Permutation Networks

Definition (substitution-permutation network)

A substitution-permutation network is a block cipher whose bijections arise as products
of substitution and permutation ciphers.

• To process a block of N bits, the block is typically devided into b chunks of
n = N/b bits each.

• Each block is processed by a sequence of steps:
• Substitution step: A chunk of n bits is substituted by applying a substitution box

(S-box).
• Permutation step: A permutation box (P-box) permutes the bits received from

S-boxes to produce bits for the next round.
• key step: A key step maps a block by xor-ing it with a key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 207 / 295

A sketch of a substitutionpermutation network with 3 rounds, encrypting a plaintext block of 16 bits into
a ciphertext block of 16 bits.

For further information:

• https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

• https://en.wikipedia.org/wiki/Substitution%E2%80%93permutation_network

194

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Substitution%E2%80%93permutation_network

Advanced Encryption Standard (AES)

• Designed by two at that time relatively unknown cryptographers from Belgium
(Vincent Rijmen and Joan Daemen, hence the name Rijndael of the proposal).

• Choosen by NIST (National Institute of Standards and Technology of the USA)
after an open call for encryption algorithms.

• Characteristics:
• overall blocksize: 128 bits
• number of parallel S-boxes: 16
• bitsize of an S-box: 8
• key size and rounds:

• 128 bit key, 10 rounds
• 192 bit key, 12 rounds
• 256 bit key, 14 rounds

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 208 / 295

The Advanced Encryption Standard was published as a Federal Information Processing Standard
(FIPS) by the National Institute of Standards and Technology (NIST) of the USA [9].

195

Advanced Encryption Standard (AES) Rounds

• Round 0:

(a) key step with k0

• Round i: (i = 1, ..., r-1)

(a) substitution step (called sub-bytes) with fixed 8-bit S-box (used 16 times)
(b) permutation step (called shift-row) with a fixed permutation of 128 bits
(c) substitution step (called mix-columns) with a fixed 32-bit S-box (used 4 times)
(d) key step (called add-round-key) with a key ki

• Round r: (no mix-columns)

(a) substitution step (called sub-bytes) with fixed 8-bit S-box (used 16 times)
(b) permutation step (called shift-row) with a fixed permutation of 128 bits
(c) key step (called add-round-key) with a key kr

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 209 / 295

The round keys k0, . . . , kr are generated by a key generator (also known as a key schedule) from the
key k provided by the user of the algorithm.

For further information:

• https://en.wikipedia.org/wiki/Rijndael_key_schedule

196

https://en.wikipedia.org/wiki/Rijndael_key_schedule

Asymmetric Encryption Algorithms

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 210 / 295

197

Asymmetric Encryption Algorithms

• Asymmetric encryption schemes work with a key pair:
• a public key used for encryption
• a private key used for decryption

• Everybody can send a protected message to a receiver by using the receiver’s public
key to encrypt the message. Only the receiver knowing the matching private key
will be able to decrypt the message.

• Asymmetric encryption schemes give us a very easy way to digitally sign a message:
A message encrypted by a sender with the sender’s private key can be verified by
any receiver using the sender’s public key.

• Ron Rivest, Adi Shamir and Leonard Adleman (all then at MIT) published the RSA
cryptosystem in 1978 which relies on the factorization problem of large numbers.

• Newer asynchronous cryptosystems often rely on the problem of finding discrete
logarithms.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 211 / 295

One inherent challenge associated with asymmetric encryption algorithms is the association of public
keys with a certain identity. If Bob wants to send Alice an encrypted message, Bob first needs to obtain
Alice’s public key. If Mallory can interfere in this process and provide his public key instead of Alice’s
key, then Mallory will be able to read the message.

Another challenge associated with asymmetric encryption algorithms is the revocation of keys. If for
some reason Alice has lost her private key, then the associated public key should not be used anymore
and any data signed with Alice’s private key should not be trusted anymore. Hence, there need to be
mechanisms to revoke keys and to check whether a key have been revoked.

198

Rivest-Shamir-Adleman (RSA)

• Key generation:
1. Generate two large prime numbers p and q of roughly the same length.
2. Compute n = pq and ϕ(n) = (p − 1)(q − 1).
3. Choose a number e satisfying 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.
4. Compute d satisfying 1 < d < ϕ(n) and ed mod ϕ(n) = 1.
5. The public key is (n, e), the private key is (n, d).

The numbers p, q and ϕ(n) are discarded.

• Encryption:
1. The cleartext m is represented as a sequence of numbers mi with

mi ∈ {0, 1, . . . , n − 1}.
2. Using the public key (n, e) compute ci = me

i mod n for all mi .

• Decryption:
1. Using the private key (n, d) compute mi = cdi mod n for all ci .
2. Transform the number sequence mi back into the original cleartext m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 212 / 295

• Key generation:

1. We choose the prime numbers p = 47 und q = 71.

2. We compute n = p · q = 3337 and ϕ(n) = (p− 1) · (q − 1) = 46 · 70 = 3220.

3. We randomly choose e = 79 for which gcd(79, 3220) = 1.

4. We compute d = 1019 satisfying ed mod 3220 = 1.

5. The public key is (3337, 79), the private key is (3337, 1019).

• Encryption:

1. The cleartext m = 6882326879666683 is devided into the blocks, 688 232 687 966 668 3.

2. Using the encryption key (3337, 79), we compute ci = me
i mod n and we get

c1 = 68879 mod 3337 = 1570

c2 = 23279 mod 3337 = 2756

c3 = 68779 mod 3337 = 2091

c4 = 96679 mod 3337 = 2276

c5 = 66879 mod 3337 = 2423

c6 = 379 mod 3337 = 158

leading to the ciphertext c = 1570 2756 2091 2276 2423 158.

• Decryption:

1. Using the decryption key (3337, 1019), we compute mi = cdi mod n and we get

m1 = 15701019 mod 3337 = 688

m2 = 27561019 mod 3337 = 232

m3 = 20911019 mod 3337 = 687

m4 = 22761019 mod 3337 = 966

m5 = 24231019 mod 3337 = 668

m6 = 1581019 mod 3337 = 3

199

2. This results in the cleartext m = 6882326879666683.

200

RSA Properties

• Security relies on the problem of factoring very large numbers.

• Quantum computers may solve this problem in polynomial time — so RSA will
become obsolete once someone manages to build quantum computers.

• The prime numbers p and q should be at least 1024 (better 2048) bit long and not
be too close to each other (otherwise an attacker can search in the proximity of√

n).

• Since two identical cleartexts mi and mj would lead to two identical ciphertexts ci
and cj , it is advisable to pad the cleartext numbers with some random digits.

• Large prime numbers can be found using probabilistic prime number tests.

• RSA encryption and decryption is compute intensive and hence usually used only
on small cleartexts.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 213 / 295

The RSA algorithm was protected by the U.S. Patent 4,405,829, which expired in September 2000.

There are various attempts to break RSA implementations. Typical problems are:

• Weak random number generators: If the random number generator used to create p and q is
somewhat predictable, it becomes possible to reduce the search space.

• Timing attacks: If it is possible to measure the time it takes to decrypt known ciphertexts, then it
is possible to find the decryption key d faster than applying brute force.

201

https://www.google.com/patents/US4405829

Cryptographic Hash Functions

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 214 / 295

202

Cryptographic Hash Functions

• Cryptographic hash functions serve many purposes:
• data integrity verification
• integrity verification and authentication (via keyed hashes)
• calculation of fingerprints for efficient digital signatures
• adjustable proof of work mechanisms

• A cryptographic hash function can be obtained from a symmetric encryption
algorithm in cipher-block-chaining mode by using the last ciphertext block as the
hash value.

• It is possible to construct more efficient cryptographic hash functions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 215 / 295

203

Cryptographic Hash Functions

Name Published Digest size Block size Rounds

MD-5 1992 128 b 512 b 4
SHA-1 1995 160 b 512 b 80

SHA-256 2002 256 b 512 b 64
SHA-512 2002 512 b 1024 b 80

SHA3-256 2015 256 b 1088 b 24
SHA3-512 2015 512 b 576 b 24

• MD-5 has been widely used but it is largely considered insecure since the late 1990s.

• SHA-1 is largely considered insecure since the lear 2000s.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 216 / 295

Unix systems often came with command line tools to calculate hash values such as sha1sum, sha256sum,
or sha512sum. The openssl command can also be used to calculate hash values.

$ echo "Welcome to Secure and Dependable Systems" > welcome.txt

$ sha1sum welcome.txt

f200fd5c39f9a96647e4f4e80187eb8ee441a160 welcome.txt

$ openssl sha1 welcome.txt

SHA1(welcome.txt)= f200fd5c39f9a96647e4f4e80187eb8ee441a160

$ sha256sum welcome.txt

b34008c3d75d00108fb669366ebdb407b893ffbebdbd265e741fd62349db9868 welcome.txt

The sha*sum tools have been written to produce checksums for a list of files and to verify a list of files
against previously computed checksums.

204

Merkle-Damg̊ard Construction

• The message is padded and postfixed with a length value.

• The function f is a collision-resistant compression function which compresses a
digest-sized input from the previous step (or the initialization vector) and a
block-sized input from the message into a digest-sized value.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 217 / 295

Example (SHA-1):

SHA

Y0

512 bit

Y1

512 bit

steps

80 SHA160

512 512

160 160

Yn−1

512 bit

512

160 160

steps

80 SHA

steps

80 SHA

hash value

cleartext
bits

641..512

bits

Padding

n 512 bit blocks length

ABCDE

205

Hashed Message Authentication Codes

• A keyed-hash message authentication code (HMAC) is a specific type of message
authentication code (MAC) involving a cryptographic hash function and a secret
cryptographic key.

• An HMAC can be used to verify both data integrity and authenticity.

• An HMAC does not encrypt the message.

• The message must be sent alongside the HMAC hash. Parties with the secret key
will hash the message again themselves, and if it is authentic, the received and
computed hashes will match.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 218 / 295

206

HMAC Computation

Given a key K , a hash function H , and a message m, the HMAC using H (HMACH) is
calculated as follows:

HMACH(K ,m) = H((K ′ ⊕ opad) ‖ H((K ′ ⊕ ipad) ‖ m))

• K ′ is derived from the original key K by padding K to the right with extra zeroes
to the input block size of the hash function, or by hashing K if it is longer than
that block size.

• The opad is the outer padding (0x5c5c5c. . . 5c, one-block-long hexadecimal
constant). The ipad is the inner padding (0x363636. . . 3636, one-block-long
hexadecimal constant).

• The symbol ⊕ denotes bitwise exclusive or and the symbol ‖ denotes concatenation.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 219 / 295

HMACs are widely used in communication protocols in situations where encryption of the messages
is not considered important while message integrity and authentication of the messages is considered
important. One reason is that using HMACs is computationally more efficient than using encryption
algorithms.

However, given the increase of data collection and more efficient algorithms to do data correlation at
large scale in recent years, there is a push to encrypt more and more data and with this the importance
of HMACs in communication protocols may reduce in the future.

For further information:

• RFC 6234: US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

207

https://doi.org/10.17487/RFC6234

Digital Signatures and Certificates

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 220 / 295

208

Digital Signatures

• Digital signatures are used to prove the authenticity of a message (or document)
and its integrity.
• Receiver can verify the claimed identity of the sender (authentiation)
• The sender can later not deny that he/she sent the message (non-repudiation)
• The message cannot be modified with invalidating the signature (integrity)

• A digital signature means that
• the sender puts a signature into a message (or document) that can be verified and
• that we can be sure that the signature cannot be faked (e.g., copied from some

other message)

• Do not confuse digital signatures, which use cryptographic mechanisms, with
electronic signatures, which may just use a scanned signature or a name entered
into a form.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 221 / 295

209

Digital Signatures using Asymmetric Cryptosystems

• Direct signature of a document m:
• Signer: S = Ek−1(m)

• Verifier: Dk(S)
?
= m

• Indirect signature of a hash of a document m:
• Signer: S = Ek−1(H(m))

• Verifier: Dk(S)
?
= H(m)

• The verifier needs to be able to obtain the public key k of the signer from a
trustworthy source.

• The signature of a hash is faster (and hence more common) but it requires to send
the signature S along with the document m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 222 / 295

210

Public Key Certificates

Definition (public key certificate)

A public key certificate is an electronic document used to prove the ownership of a
public key. The certificate includes

• information about the public key,

• information about the identity of its owner (called the subject), and

• the digital signature of an entity that has verified the certificate’s contents (called
the issuer).

• If the signature is valid, and the software examining the certificate trusts the issuer
of the certificate, then it can trust the public key contained in the certificate to
belong to the subject of the certificate.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 223 / 295

211

Public Key Infrastructure (PKI)

Definition
A public key infrastructure (PKI) is a set of roles, policies, and procedures needed to
create, manage, distribute, use, store, and revoke digital certificates and manage
public-key encryption.

• A central element of a PKI is the certificate authority (CA), which is responsible for
storing, issuing and signing digital certificates.

• CAs are often hierarchically organized. A root CA may delegate some of the work
to trusted secondary CAs if they execute their tasks according to certain rules
defined by the root CA.

• A key function of a CA is to verify the identity of the subject (the owner) of a
public key certificate.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 224 / 295

212

X.509 Certificate ASN.1 Definition

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 225 / 295

The widely used standard for public key certificates goes back to work done by ITU-T in the late 1980s
to define open standards for directory services. The directory standard was known under the name
X.500 and X.509 was its public key certificate format. Back in the late 1980, it was popular to define the
format of messages using the Abstract Syntax Notation One (ASN.1). The ASN.1 type definition

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

has to be read as if it would define the following C structure:

typedef struct {

TBSCertificate tbsCertificate;

AlgorithmIdentifier signatureAlgorithm;

BitString signatureValue;

} Certificate;

In other words, a Certificate is composed of a structure that holds information about the subject and the
certificate (the TBSCertificate) and a signature and a signature algorithm identifier. The important fields
of the TBSCertificate are:

• version: The version of the encoded certificate. The current version is version 3.

• serialNumber: A unique positive integer assigned by the CA to each certificate.

• signature: The algorithm identifier for the algorithm used by the CA to sign the certificate.

• issuer: The issuer field identifies the entity that has signed and issued the certificate.

• validity: The certificate validity period is the time interval during which the CA warrants that it will
maintain information about the status of the certificate.

• subject: The subject field identifies the entity associated with the public key stored in the subject
public key field.

• subjectPublicKeyInfo: This field is used to carry the public key together with an identification of the
algorithm with which the key is to be used (e.g., RSA).

213

X.509 Certificate ASN.1 Definition

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

-- contains the DER encoding of an ASN.1 value

-- corresponding to the extension type identified

-- by extnID

}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 226 / 295

Implementations often store certificates in .crt files. Such a file can be converted into human readable
text using an openssl shell command:

$ openssl x509 -in grader.eecs.jacobs-university.de.crt -text -noout

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

1c:56:75:9d:a9:94:a4:11:70:ea:b1:e7

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = DE, O = Jacobs University Bremen gGmbH, OU = IRC-IT, CN = Jacobs University CA - G01

Validity

Not Before: Nov 24 14:24:14 2016 GMT

Not After : Jul 9 23:59:00 2019 GMT

Subject: C = DE, ST = Bremen, L = Bremen, O = Jacobs University Bremen gGmbH, CN = grader.eecs.jacobs-university.de

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)

Modulus:

00:ae:7a:f1:e4:8c:2e:70:a6:8a:b9:ec:74:df:7e:

06:87:e6:eb:6c:c0:3b:62:35:40:8b:dd:cc:c3:28:

c2:2d:32:30:4f:08:e1:bb:40:c1:52:84:cb:5a:90:

23:74:9d:cc:13:88:9a:55:9c:55:57:18:90:88:af:

fa:8e:2a:17:15:68:a2:e8:e9:6a:9e:2e:4b:aa:5a:

d0:2b:c9:f3:ba:0d:08:3e:28:6c:64:fd:fb:3e:b9:

82:54:c7:f6:6c:9a:67:64:7a:de:c5:5e:bb:51:ce:

5c:24:f0:57:d5:11:12:e8:2e:c5:02:c0:a2:da:f3:

17:69:ba:de:c0:e1:df:cf:86:62:e0:fb:4e:18:19:

eb:cf:53:32:67:28:64:ae:b8:d2:bf:d6:9c:55:0a:

92:b6:49:df:7e:91:47:13:b8:a5:58:7a:ec:45:38:

88:d4:77:42:5c:d0:d4:77:b5:c5:79:01:b0:94:ea:

de:3b:5f:da:75:07:50:9e:25:14:53:c7:18:91:16:

75:2a:1c:30:21:64:a8:43:e5:f6:6b:56:27:6e:bc:

4f:c8:56:97:c5:1f:13:b8:9c:dd:e2:74:7e:cb:8d:

67:29:81:96:59:5b:18:6a:02:c5:20:a7:5f:23:5d:

de:3a:7d:64:38:28:45:52:ce:e9:2f:03:f9:52:ae:

1c:a3

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Certificate Policies:

Policy: 1.3.6.1.4.1.22177.300.1.1.4.3.5

Policy: 1.3.6.1.4.1.22177.300.2.1.4.3.1

Policy: 1.3.6.1.4.1.22177.300.1.1.4

Policy: 1.3.6.1.4.1.22177.300.30

214

Policy: 2.23.140.1.2.2

X509v3 Basic Constraints:

CA:FALSE

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Server Authentication

X509v3 Subject Key Identifier:

7D:A1:33:72:42:86:A8:93:15:06:B2:FF:03:FD:12:EC:5F:A4:4E:61

X509v3 Authority Key Identifier:

keyid:1C:AB:41:DA:D4:95:D4:9D:1E:82:CD:4D:7D:13:25:37:EC:1F:88:A7

X509v3 Subject Alternative Name:

DNS:grader.eecs.jacobs-university.de

X509v3 CRL Distribution Points:

Full Name:

URI:http://cdp1.pca.dfn.de/jacobs-university-ca/pub/crl/cacrl.crl

Full Name:

URI:http://cdp2.pca.dfn.de/jacobs-university-ca/pub/crl/cacrl.crl

Authority Information Access:

OCSP - URI:http://ocsp.pca.dfn.de/OCSP-Server/OCSP

CA Issuers - URI:http://cdp1.pca.dfn.de/jacobs-university-ca/pub/cacert/cacert.crt

CA Issuers - URI:http://cdp2.pca.dfn.de/jacobs-university-ca/pub/cacert/cacert.crt

Signature Algorithm: sha256WithRSAEncryption

4a:8a:c1:33:d1:5a:0d:6e:a1:c4:90:85:0a:3e:db:44:f2:b2:

95:31:12:31:6f:5a:a5:a8:34:1c:91:39:0a:cd:03:e6:7e:9d:

4e:ee:a7:16:29:9b:24:1c:b9:e3:c9:fd:7a:1e:f3:02:92:cb:

46:41:05:ca:82:4f:5a:39:a6:41:9d:76:27:61:2f:1f:de:44:

91:af:48:4e:91:07:22:bd:09:1a:94:74:59:8c:29:43:72:b7:

0f:37:3c:b2:b4:1d:7b:8d:96:d7:d5:a0:1b:6a:b3:8b:b8:f2:

88:ee:39:a0:8e:76:bf:3d:f1:a4:0a:22:43:f4:ab:e9:df:4b:

a0:1e:b5:37:71:28:e9:38:ca:e0:61:63:fb:32:51:34:7b:d7:

3d:6b:7b:be:9a:57:1b:6c:c2:5b:f2:80:12:25:39:26:20:e0:

af:c2:b0:d9:ec:36:cf:33:b0:0f:22:de:70:e4:11:c1:56:d3:

73:9b:12:e3:02:61:19:64:99:6d:dd:8a:fe:58:72:a0:f4:18:

91:06:69:58:c1:05:d0:16:c3:e4:8e:70:72:56:7d:28:9f:60:

a6:32:21:69:b7:64:07:fe:19:49:f1:f1:58:dc:4c:dd:a2:f4:

b5:7a:f3:f8:f4:62:f5:89:ee:aa:9c:fd:64:d5:6d:12:48:cf:

3e:5e:70:dc

215

X.509 Subject Alternative Name Extension

id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

otherName [0] OtherName,

rfc822Name [1] IA5String,

dNSName [2] IA5String,

x400Address [3] ORAddress,

directoryName [4] Name,

ediPartyName [5] EDIPartyName,

uniformResourceIdentifier [6] IA5String,

iPAddress [7] OCTET STRING,

registeredID [8] OBJECT IDENTIFIER }

OtherName ::= SEQUENCE {

type-id OBJECT IDENTIFIER,

value [0] EXPLICIT ANY DEFINED BY type-id }

EDIPartyName ::= SEQUENCE {

nameAssigner [0] DirectoryString OPTIONAL,

partyName [1] DirectoryString }

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 227 / 295

The subject of a X.509 certificate is a so called Distinguished Name. While this format made sense
in the X.500 world, we usually use other names in the Internet context. The Subject Alternative
Name Extension provides a mechanism to have an extensible format for alternative names. In the
example shown on the previous pages, the subject alternative name is a DNS name and the value is
grader.eecs.jacobs-university.de.

Some organizations make use of wildcard certificates where one DNS label (a part of a DNS name)
may include a wildcard character (*). A single wildcard certificate for https://*.example.com will
secure all these subdomains on the https://*.example.com domain, such as payment.example.com,
contact.example.com, or www.example.com. While wildcard certificates may be convenient for system
administrators, it is generally recommended to not use them, see for example Section 7.2 of RFC 6125.

216

Key Management Schemes

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 228 / 295

217

Cryptographic Protocol Notation

A,B , . . . principals
KAB , . . . symmetric key shared between A and B
KA, . . . public key of A
K−1A , . . . private key of A
H cryptographic hash function
NA,NB , . . . nonces (fresh random messages) chosen by A, B , . . .

P ,Q,R variables ranging over principals
X ,Y variables ranging over statements
K variable over a key

{m}K message m encrypted with key K

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 229 / 295

218

Key Exchange and Ephemeral Keys

Definition (key exchange)

Key exchange (also key establishment) is any method by which cryptographic keys are
exchanged between two parties, allowing use of a cryptographic algorithm.

• Key exchange methods are important to establish ephemeral keys even if two
principals have already access to suitable keys

• Ephemeral keys help to protect keys that are used to bootstrap secure
communication between principals

• Ephemeral keys can provide perfect forward secrecy

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 230 / 295

219

Diffie-Hellman Key Exchange

• Initialization:
• Define a prime number p and a primitive root g of Zp with g < p. The numbers p

and g can be made public.
• Exchange:

• A randomly picks xA ∈ Zp and computes yA = g xA mod p. xA is kept secret while
yA is sent to B.

• B randomly picks xB ∈ Zp and computes yB = g xB mod p. xB is kept secret while
yB is sent to A.

• A computes:

KAB = y xAB mod p = (g xB mod p)xA mod p = g xAxB mod p

• B computes:

KAB = y xBA mod p = (g xA mod p)xB mod p = g xAxB mod p

• A and B now own a shared key KAB .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 231 / 295

Example:

• A and B agree to use p = 47 and g = 3

• A picks xA = 8 and computes yA = 38 mod 47 = 28

• B picks xB = 10 and computes yB = 310 mod 47 = 17

• A sends yA = 28 to B

• B sends yB = 17 to A

• A computes KAB = 178 mod 47 = 4

• B computes KAB = 2810 mod 47 = 4

220

Diffie-Hellman Key Exchange (cont.)

• A number g is a primitive root of Zp = {0, . . . , p − 1} if the sequence
g 1 mod p, g 2 mod p, . . . , gp−1 mod p produces the numbers 1, . . . , p − 1 in any
permutation.

• p should be choosen such that (p − 1)/2 is prime as well.

• p should have a length of at least 2048 bits.

• Diffie-Hellman is not perfect: An attacker can play “man in the middle” (MIM) by
claiming B ’s identity to A and A’s identity to B .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 232 / 295

221

Needham-Schroeder Protocol

A B

S

1

2

3

5

4

Msg 1: A→ S : A,B ,Na

Msg 2: S → A : {Na,B ,KAB , {KAB ,A}KBS
}KAS

Msg 3: A→ B : {KAB ,A}KBS

Msg 4: B → A : {Nb}KAB

Msg 5: A→ B : {Nb − 1}KAB

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 233 / 295

The principals A and B both share a key with the server S

• Principals A and B both share a secrect (KAS ,KBS) key with an authentication server S.

• A and B need a shared key to secure communication between them.

• Idea: The authentication server creates a key KAB and distributes it to the principals A and B,
protected by the keys shared with S.

• Principal B must believe in the freshness of KAB in the third message. This allows an attacker to
break KAB without any time constraint.

• The problem can be solved by introducing time stamps. However, timestamps require securely
synchronized clocks.

• The double encryption in the second message is redundant.

• How can we find protocol shortcomings in a structured way?

222

Kerberos Protocol

A B

S

1

2

4

3

Msg 1: A→ S : A,B
Msg 2: S → A : {Ts , L,KAB ,B , {Ts , L,KAB ,A}KBS

}KAS

Msg 3: A→ B : {Ts , L,KAB ,A}KBS
, {A,Ta}KAB

Msg 4: B → A : {Ta + 1}KAB

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 234 / 295

• Improved version of the Needham-Schroeder protocol.

• Uses time stamps to address the flaw in the original Needham-Schroeder protocol.

• Uses only four messages instead five.

• Can Needham-Schroeder be fixed without introducing time stamps?

• If yes, can it be done in just four messages, or are five or even more messages required?

For an alternate solution, see [13].

223

BAN Logic

• Idea: Use a formal logic to reason about authentication protocols.

• Answer questions such as:
• What can be achieve with the protocol?
• Does a given protocol have stronger prerequisites than some other protocol?
• Does a protocol do something which is not needed?
• Is a protocol minimal regarding the number of messages exchanged?

• The Burrows-Abadi-Needham (BAN) logic was a first attempt to provide a
formalism for authentication protocol analysis.

• The spi calculus, an extension of the pi calculus, was introduced later to analyze
cryptographic protocols.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 235 / 295

The BAN logic appeared in 1989 [3] and the spi calculus about ten years later in 1999 [1].

224

Using BAN Logic

• Steps to use BAN logic:

1. Idealize the protocol in the language of the formal logic.
2. Identify your initial security assumptions in the language of BAN logic.
3. Use the productions and rules of the logic to deduce new predicates.
4. Interpret the statements you’ve proved by this process. Have you reached your

goals?
5. Trim unnecessary fat from the protocol, and repeat (optional).

• BAN logic does not prove correctness of the protocol; but it helps to find subtle
errors.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 236 / 295

225

Part V

Secure Communication Protocols

226

Pretty Good Privacy

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 238 / 295

227

Pretty Good Privacy (PGP)

• PGP was developed by Philip Zimmerman in 1991 and it is rather famous because
PGP also demonstrated why patent laws and export laws in a globalized world need
new interpretations.

• There are nowadays several independent PGP implementations.

• The underlying PGP specification is now called open PGP (RFC 4880).

• A competitor to PGP is S/MIME (which relies on X.509 certificates).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 239 / 295

A popular implementation of RFC 4880 [4] is the Gnu Privacy Guard (gpg).

PGP (or GPG) is used to sign software updates in the Debian and Ubuntu Linux distributions. The
keys used to sign software release files are distributed using a debian-archive-keyring package. The
release file contains the checksums of the packages.

Note that using PGP (or GPG) is not always a good idea. For a discussion, see the paper “Off-the-
Record Communication, or, Why Not To Use PGP”, WPES’04, ACM, Ocober 28 2004.

228

PGP Signatures

Comparison

Party B

m

Z
−1

D

KA

H

m

H E

K
−1
A

|| Z

E(H(m))

Party A

• A computes c = Z (EK−1
A

(H(m))||m)

• B computes Z−1(c), splits the message and checks the signature by computing
DKA

(EK−1
A

(H(m))) and then checking the hash H(m).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 240 / 295

PGP originally used the hash-function MD5, the public-key algorithm RSA and zlib compression. Newer
versions support crypto agility.

229

PGP Confidentiality

Party B

S

m

KSD

D

KB
−1

Z
−1

Z ||

KS

E

E

KB

m

Party A

E(K)

• A encrypts the message using the key Ks generated by the sender and appended to
the encrypted message.

• The key Ks is protected by encrypting it with the public key KB .

• Symmetric encryption is fast while public-key algorithms make it easier to exchange
keys.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 241 / 295

230

PGP Signatures and Confidentiality

Comparison

S

H

K
−1
A

E

|| Z E ||

KS

KB

E

m

KSD

D

KB
−1

Z
−1

D

KA

H

E(H(m))

Party A Party B

E(K)

• Signature and confidentiality can be combined as shown above.

• PGP uses in addition Radix-64 encoding (a variant of base-64 encoding) to ensure
that messages can be represented using the ASCII character set.

• PGP supports segmentation/reassembly functions for very large messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 242 / 295

231

PGP Key Management

• Keys are maintained in so called key rings (one for public keys and one for private
keys).

• Key generation utilizes various sources of random information (/dev/random if
available) and symmetric encryption algorithms to generate good key material.

• So called “key signing parties” are used to sign keys of others and to establish a
“web of trust” in order to avoid centralized certification authorities.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 243 / 295

PGP keys need to be signed to build the web of trust. PGP key signing often takes place in so called
PGP key signing parties. Here is a short description how this works (using the gpg command line tool):

• Create a gpg key and publish it:

gpg --full-generate-key

Inspect your keys and get the key identifier of your public key:

gpg --list-keys [--fingerprint]

MYKEYID=’...’

• Send your public key to a key server:

gpg --send-key $MYKEYID

• Prepare for key signing (print out fingerprints of your key)

gpg -v --fingerprint $MYKEYID

• Signing keys of others, identified by their key identifier:

YOURKEYID=’...’

gpg --recv-keys $YOURKEYID

gpg --fingerprint $YOURKEYID

Verify the fingerprints and the identity of the person. Then sign the key:

gpg --sign-key $YOURKEYID

Send the signature back to the owner of the key:

gpg --armor --export $YOURKEYID \

| gpg --encrypt -r $YOURKEYID --armor --output $YOURKEYID-signedby-$MYKEYID.asc

• Importing signatures and publishing your signed public key:

gpg -d $MYKEY-signedBy-$YOURKEYID.asc | gpg --import

Send your key with the signatures to a key server:

gpg --send-key $MYKEYID

232

PGP Private Key Ring

Timestamp Key ID Public Key Encrypted Private Key User ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ti Ki mod 264 Ki EH(Pi)
(K−1

i) Useri

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• Private keys are encrypted using EH(Pi)(), which is a symmetric encryption function
using a key which is derived from a hash value computed over a user supplied
passphrase Pi .

• The Key ID is taken from the last 64 bits of the key Ki .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 244 / 295

233

PGP Public Key Ring

Timestamp Key ID Public Key Owner Trust User ID Signatures Sig. Trust(s)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ti Ki mod 264 Ki otrusti Useri

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• Keys in the public key ring can be signed by multiple parties. Every signature has
an associated trust level:

1. undefined trust
2. usually not trusted
3. usually trusted
4. always trusted

• Computing a trust level for new keys which are signed by others (trusting others
when they sign keys).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 245 / 295

234

Transport Layer Security

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 246 / 295

235

Transport Layer Security

• Transport Layer Security (TLS), formerly known as Secure Socket Layer (SSL), was
created by Netscape to secure data transfers on the Web (i.e., to enable commerce
on the Web)

• As a user-space implementation, TLS can be shipped as part of applications (Web
browsers) and does not require operating system support

• TLS uses X.509 certificates to authenticate servers and clients (although TLS layer
client authentication is not often used)

• TLS is widely used to secure application protocols running over TCP (e.g., http,
smtp, ftp, telnet, imap, . . .)

• A datagram version of TLS called DTLS can be used with protocols running over
UDP

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 247 / 295

TLS 1.2 is defined in RFC 5246 [7]. The publication of TLS 1.3 is expected during 2018 (the specification
already got approved). DTLS 1.2 is defined in RFC 6347 [18]. A good article describing the design of
DTLS is [15].

236

History of TLS and SSL

Name Organization Published Wire Version

SSL 1.0 Netscape unpublished 1.0
SSL 2.0 Netscape 1995 2.0
SSL 3.0 Netscape 1996 3.0

TLS 1.0 IETF 1999 3.1
TLS 1.1 IETF 2006 3.2
TLS 1.2 IETF 2008 3.3
TLS 1.3 IETF 2018 3.3 + supported versions

• TLS 1.3 is brand new, this material follows TLS 1.2 and TLS 1.3

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 248 / 295

Attacks on TLS 1.2 have been increasing in recent years. TLS 1.3 introduces a radically different
handshake protocol and it removes a large collection of problematic constructs. However, only future
will tell whether TLS 1.3 is robust to attacks.

237

TLS Protocols

• The Handshake Protocol authenticates the communicating parties, negotiates
cryptographic modes and parameters, and establishes shared keying material.

• The Alert Protocol communicates alerts such as closure alerts and error alerts.

• The Record Protocol uses the parameters established by the handshake protocol to
protect traffic between the communicating peers.

• The Record Protocol is the lowest internal layer of TLS and it carries the
handshake and alert protocol messages as well as application data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 249 / 295

238

TLS Record Protocol

Record Protocol
The record protocol takes messages to be transmitted, fragments the data into
manageable blocks, optionally compresses the data, adds a message authentication
code, and encrypts and transmits the result. Received data is decrypted, verified,
decompressed, reassembled, and then delivered to higher-level clients.

• The record layer is used by the handshake protocol, the change cipher spec
protocol (only TLS 1.2), the alert protocol, and the application data protocol.

• The fragmentation and reassembly provided does not preserve application message
boundaries.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 250 / 295

TLS defines message formats using a notation that resembles C. Here is the definition of the record pro-
tocol of TLS 1.2. Note that tha record can be either TLSPlaintext, TLSCompressed, or TLSCiphertext,
where the TLSCiphertext supports multiple cipher types.

struct {

uint8 major;

uint8 minor;

} ProtocolVersion;

enum {

change_cipher_spec(20), alert(21), handshake(22),

application_data(23), (255)

} ContentType;

struct {

ContentType type;

ProtocolVersion version;

uint16 length;

opaque fragment[TLSPlaintext.length];

} TLSPlaintext;

struct {

ContentType type; /* same as TLSPlaintext.type */

ProtocolVersion version;/* same as TLSPlaintext.version */

uint16 length;

opaque fragment[TLSCompressed.length];

} TLSCompressed;

struct {

ContentType type;

ProtocolVersion version;

uint16 length;

select (SecurityParameters.cipher_type) {

case stream: GenericStreamCipher;

case block: GenericBlockCipher;

case aead: GenericAEADCipher;

} fragment;

} TLSCiphertext;

239

TLS 1.3 drops TLSCompressed and simplifies TLSCiphertext by always using ciphers modeled as Au-
thenticated Encryption with Additional Data (AEAD).

uint16 ProtocolVersion;

enum {

invalid(0), change_cipher_spec(20), alert(21), handshake(22),

application_data(23), (255)

} ContentType;

struct {

ContentType type;

ProtocolVersion legacy_record_version;

uint16 length;

opaque fragment[TLSPlaintext.length];

} TLSPlaintext;

struct {

opaque content[TLSPlaintext.length];

ContentType type;

uint8 zeros[length_of_padding];

} TLSInnerPlaintext;

struct {

ContentType opaque_type = application_data; /* 23 */

ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */

uint16 length;

opaque encrypted_record[TLSCiphertext.length];

} TLSCiphertext;

240

TLS Handshake Protocol

Handshake Protocol
• Exchange messages to agree on algorithms, exchange random numbers, and check

for session resumption.

• Exchange the necessary cryptographic parameters to allow the client and server to
agree on a premaster secret.

• Exchange certificates and cryptographic information to allow the client and server
to authenticate themselves.

• Generate a master secret from the premaster secret and the exchanged random
numbers.

• Provide security parameters to the record layer.

• Allow client and server to verify that the peer has calculated the same security
parameters and that the handshake completed without tampering by an attacker.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 251 / 295

A full TLS 1.2 handshake is used to establish a session key. Client authentication using a certificate is
supported but not mandatory to use. A full TLS 1.2 handshake requires two round-trips before applica-
tion data can be sent.

Client Server

ClientHello -------->

ServerHello

Certificate*

ServerKeyExchange*

CertificateRequest*

<-------- ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished -------->

[ChangeCipherSpec]

<-------- Finished

Application Data <-------> Application Data

Full handshakes are expensive. A session resumption mechanism was designed for TLS 1.2 to improve
performance in situations where sessions are short and frequent.

Client Server

ClientHello -------->

ServerHello

[ChangeCipherSpec]

<-------- Finished

[ChangeCipherSpec]

Finished -------->

Application Data <-------> Application Data

TLS 1.2 session resumption requires only one round-trip and it saves CPU intensive asymmetric crypto
operations.

TLS 1.3 has very different handshake exchanges. The full TLS 1.3 handshake looks like this:

241

Client Server

Key ^ ClientHello

Exch | + key_share*

| + signature_algorithms*

| + psk_key_exchange_modes*

v + pre_shared_key* -------->

ServerHello ^ Key

+ key_share* | Exch

+ pre_shared_key* v

{EncryptedExtensions} ^ Server

{CertificateRequest*} v Params

{Certificate*} ^

{CertificateVerify*} | Auth

{Finished} v

<-------- [Application Data*]

^ {Certificate*}

Auth | {CertificateVerify*}

v {Finished} -------->

[Application Data] <-------> [Application Data]

TLS 1.3 supports a so-called 0-rtt (zero round-trip) mode:

Client Server

ClientHello

+ early_data

+ key_share*

+ psk_key_exchange_modes

+ pre_shared_key

(Application Data*) -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

+ early_data*

{Finished}

<-------- [Application Data*]

(EndOfEarlyData)

{Finished} -------->

[Application Data] <-------> [Application Data]

Note that early data enjoys less cryptographic strong protection.

242

TLS Change Cipher Spec Protocol

Change Cipher Spec Protocol
The change cipher spec protocol is used to signal transitions in ciphering strategies.

• The protocol consists of a single ChangeCipherSpec message.

• This message is sent by both the client and the server to notify the receiving party
that subsequent records will be protected under the newly negotiated CipherSpec
and keys.

• This protocol does not exist anymore in TLS 1.3.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 252 / 295

243

TLS Alert Protocol

Alert Protocol
The alert protocol is used to signal exceptions (warnings, errors) that occured during
the processing of TLS protocol messages.

• The alert protocol is used to properly close a TLS connection by exchanging
close notify alert messages.

• The closure exchange allows to detect truncation attacks.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 253 / 295

244

Secure Shell

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 254 / 295

245

Secure Shell (SSH)

• SSH provides a secure connection through which user authentication and several
inner protocols can be run.

• The general architecture of SSH is defined in RFC 4251.

• SSH was initially developed by Tatu Ylonen at the Helsinki University of
Technology in 1995, who later founded SSH Communications Security.

• SSH was quickly adopted as a replacement for insecure remote login protocols such
as telnet or rlogin/rsh.

• Several commercial and open source implementations are available running on
almost all platforms.

• SSH is a Proposed Standard protocol of the IETF since 2006.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 255 / 295

246

SSH Protocol Layers

1. The Transport Layer Protocol provides server authentication, confidentiality, and
integrity with perfect forward secrecy

2. The User Authentication Protocol authenticates the client-side user to the
server

3. The Connection Protocol multiplexes the encrypted data stream into several
logical channels

⇒ SSH authentication is not symmetric!

⇒ The SSH protocol is designed for clarity, not necessarily for efficiency (shows its
academic roots)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 256 / 295

247

SSH Keys, Passwords, and Passphrases

Host Key

Every machine must have a public/private host key pair. Host Keys are often identified
by their fingerprint.

User Key

Users may have their own public/private key pairs.

User Password
Accounts may have passwords to authenticate users.

Passphrase
The storage of a user’s private key may be protected by a passphrase.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 257 / 295

248

SSH Features: TCP Forwarding

ssh −f joe@example.com −L 2000:example.com:25 −N

s
m

tp

s
s

h

22 25

s
s

h

m
a

il

2000 encrypted

example.com

• TCP forwarding allows users to tunnel unencrypted traffic through an encrypted
SSH connection.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 258 / 295

249

SSH Features: X11 Forwarding

DISPLAY

s
s

h

X
1

1
encrypted

example.com

ssh −X joe@example.com

x
e

y
e

s

s
s

h

22

multiple channels

• X11 forwarding is a special application of TCP forwarding allowing X11 clients on
remote machines to access the local X11 server (managing the display and the
keyboard/mouse).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 259 / 295

250

SSH Features: Connection Sharing

ssh joe@example.com

s
s

h

encrypted

example.com

s
s

h

s
s

h

22

multiple channels
s

s
h

local socket

• New SSH connections hook as a new channel into an existing SSH connection,
reducing session startup times (speeding up shell features such as tab expansion).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 260 / 295

251

SSH Features: IP Tunneling

1
0

.0
.9

9
.0

/2
4

s
s

h

encrypted

example.com

s
s

h

s
s

h

ssh −f −w 0:1 example.com

tun0

IP

10.1.1.1

IP

tun110.1.1.2

ifconfig tun0 10.1.1.1 10.1.1.2 \

route add 10.0.99.0/24 10.1.1.2

 netmask 255.255.255.255 netmask 255.255.255.255

route add 10.0.50.0/24 10.1.1.1

ifconfig tun0 10.1.1.2 10.1.1.1 \

1
0

.0
.5

0
.0

/2
4

• Tunnel IP packets over an SSH connection by inserting tunnel interfaces into the
kernels and by configuring IP forwarding.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 261 / 295

252

SSH Features: SSH Agent

ssh joe@example.com

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h

22longlived
handling of keys

• Maintains client credentials during a login session so that credentials can be reused
by different SSH invocations without further user interaction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 262 / 295

253

SSH Features: SSH Agent Forwarding

ssh ben@example.org

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h

22longlived
handling of keys

s
s

h

multiple channels

forwarded
agent endpoint

ssh joe@example.com

• An SSH server emulates an SSH Agent and forwards requests to the SSH Agent of
its client, creating a chain of SSH Agent delegations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 263 / 295

254

SSH Transport Protocol

• Transport Protocol (RFC 4253) provides
• strong encryption,
• server authentication,
• integrity protection, and
• optionally compression.

• SSH transport protocol typically runs over TCP

• 3DES (required), AES128 (recommended)

• hmac-sha2-256 (recommended, see RFC 6668)

• Automatic key re-exchange, usually after 1 GB of data have been transferred or
after 1 hour has passed, whichever is sooner.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 264 / 295

255

SSH Key Exchange

• The SSH host key exchange identifies a server by its hostname or IP address and
possibly port number.

• Other key exchange mechanisms use different naming schemes for a host.

• Different key exchange algorithms
• Diffie-Hellman style key exchange
• GSS-API style key exchange

• Different Host key algorithms
• Host key used to authenticate key exchange
• SSH RSA and DSA keys
• X.509 (under development)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 265 / 295

256

SSH User Authentication

• Executes after transport protocol initialization (key exchange) to authenticate
client.

• Authentication methods:
• Password (classic password authentication)
• Interactive (challenge response authentication)
• Host-based (uses host key for user authentication)
• Public key (usually DSA or RSA keypairs)
• GSS-API (Kerberos / NETLM authentication)
• X.509 (under development)

• Authentication is client-driven.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 266 / 295

257

SSH Connection Protocol

• Allows opening of multiple independent channels.

• Channels may be multiplexed in a single SSH connection.

• Channel requests are used to relay out-of-band channel specific data (e.g., window
resizing information).

• Channels commonly used for TCP forwarding.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 267 / 295

258

OpenSSH Privilege Separation

• Privilege separation is a technique in which a program is divided into parts which
are limited to the specific privileges they require in order to perform a specific task.

• OpenSSH is using two processes: one running with special privileges and one
running under normal user privileges

• The process with special privileges carries out all operations requiring special
permissions.

• The process with normal user privileges performs the bulk of the computation not
requiring special rights.

• Bugs in the code running with normal user privileges do not give special access
rights to an attacker.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 268 / 295

259

Part VI

Information Hiding and Privacy

Cryptographic mechanism can protect information. By encrypting data, only parties with access to the
appropriate keys can read or modify the data. There are, however, situations where it is desirable to
hide the fact that data exists. Information hiding is a research domain that covers a wide spectrum of
methods that are used to make (secret) data difficult to notice [20].

We will first introduce techniques to hide data in other data (steganography) and techniques to proof
that a certain data object has a certain origin (watermarks). Afterwards, we will discuss hidden commu-
nication channels (covert channels).

We then focus out attention on anonymity. We start by introducing basic terminology (anonymity, un-
linkability, undetectability, pseudonymity, identifiability) and then look at the basic principles of mixing
networks and onion routing networks.

260

Steganography and Watermarks

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 270 / 295

For a good introduction into stegangraphy, see the paper by Niels Provos and Peter Honeyman [16].

261

Information Hiding

Definition (information hiding)

Information hiding aims at concealing the very existence of some kind of information for
some specific purpose.

• Information hiding itself does not aim at protecting message content

• Encryption protects message content but is by itself not hide the existence of a
message

• Information hiding techniques are often used together with encryption in order to
both hide the existence of messages and to protect messages in case their existance
is uncovered

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 271 / 295

Some applications of information hiding:

• Improve confidentiality by hiding the very existance of messages

• Prove ownership of digital media (watermarking)

• Fingerprinting media for tracing purposes

• Hiding communication (covert channels)

• Enabling forensics

• . . .

262

Steganography

Definition (steganography)

Steganography is the embedding some information (hidden-text) within a digital media
(cover-text) so that the resulting digital media (stego-text) looks unchanged
(imperceptible) to a human/machine.

• Information hiding explores the fact that there are often unused or redundant bits
in digital media that can be used to carry hidden digital information.

• The challenge is to identify unused or redundant bits and to encode hidden digital
information in them in such a way that the existence of hidden information is
difficult to observe.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 272 / 295

263

Steganography Workflow

cover−text

or

storage

cover−text encoder stego−text

decoderhidden−text

keys

hidden−text

communication

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 273 / 295

$ gnuplot landau.gp > landau.jpg

$ steghide embed -cf landau.jpg -ef landau.gp -sf landau.jpeg

$ steghide extract -sf landau.jpeg -xf -

set term jpeg

set title "Commonly Used Landau Sets"

set grid

set xrange [0:100]

set yrange [0:1000]

plot 1 title "O(1)", \

log(x) title "O(log n)", \

x title "O(n)", \

x*log(x) title "O(n log n)", \

x**2 title "O(n^2)", \

2**x title "O(2^n)"

264

Types of Cover Media

• Information can be hidden in various cover media types:
• Image files
• Audio files
• Video files
• Text files
• Software (e.g., executable files)
• Network traffic (e.g., covert channels)
• Storage devices (e.g., steganographic file systems)
• Events (e.g., timing covert channels, signaling covert channels)
• . . .

• Media types of large size usually make it easier to hide information.

• Robust steganographic methods may survive some typical modifications of
stego-texts (e.g., cropping or recoding of images).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 274 / 295

265

Watermarking

Definition (watermarking)

Watermarking is the embedding some information (watermark) within a digital media
(cover-text) so that the resulting digital media looks unchanged (imperceptible) to a
human/machine.

• Watermarking:
• The hidden information itself is not important.
• The watermark says something about the cover-text.

• Steganography:
• The cover-text is not important, it only conveys the hidden information.
• The hidden text is the valuable information, and it is independent of cover-text.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 275 / 295

Digital watermarks are widely used to for copyright protection and source tracking purposes.

Some modern laser printers add tiny yellow dots to each page. The barely-visible dots contain encoded
printer serial numbers and date and time stamps.

Compared to steganography algorithms, watermark algorithms usually only need to store small amounts
of data. Watermarking algorithms are usually designed to produce robust watermarks (watermarks
survive transformations applied to the cover text) and to be difficult to detect and to make it hard to
remove watermarks.

One specific application of watermarking is the detection of modifications of digitial media. For example,
image processing tools can make significant changes and tampered “fake” images may later be used
to support false claims. By embedding a cryptographic hash computed over an image and a key known
only to the source of an image as a watermark in an image, it can be possible to detect attempts to edit
images.

In the software industry, watermarks may be carried in executable program code in order to track copies
and to be able to claim that illegal copies of software originate from a certain customer.

266

Types of Steganographic Algorithms

• fragile vs. robust
• Fragile: Modifiations of stego-text likly destroys hidden text.
• Robust: Hidden text is likely to survive modifications of the stego-text.

• blind vs. semi-blind vs. non-blind
• Blind requires the original cover-text for detection / extraction.
• Semi-blind needs some information from the embedding not not the whole

cover-text
• Non-blind does not need any information for detection / extraction.

• pure vs. secret key vs. public key
• Pure needs no key for detection / extraction.
• Secret key needs a symmetric key for embedding and extraction.
• Public key needs a secret key for embedding and a public key for extraction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 276 / 295

267

LSB-based Image Steganography

• Idea:
• Some image formats encode a pixel using three 8-bit color values (red, green, blue).
• Changes in the least-significant bits (LSB) are difficult for humans to see.

• Approach:
• Use a key to select some least-significant bits of an image to embed hidden

information.
• Encode the information multiple times to achieve some robustness against noise.

• Problem:
• Existence of hidden information may be revealed if the statistical properties of

least-significant bits change.
• Fragile against noise such as compression, resizing, cropping, rotating or simply

additive white Gaussian noise.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 277 / 295

268

DCT-based Image Steganography

• Idea:
• Image formats such as JPEG use discrete cosine transforms (DCT) to encode image

data.
• The manipulation happens in the frequency domain instead of the spatial domain

and this reduces visual attacks against the JPEG image format.

• Approach:
• Replace the least-significant bits of some of the discrete cosine transform

coefficients.
• Use a key to select some DCT coefficients of an image to embed hidden information.

• Problem:
• Existence of hidden information may be revealed if the statistical properties of the

DCT coefficients are changed.
• This risk may be reduced by using an pseudo-random number generator to select

coefficients.
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 278 / 295

269

Covert Channels

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 279 / 295

For a good overview of covert channel, see the survery paper by Steffen Wendzel et al. [21].

270

Covert Channels

• Covert channels represent unforeseen communication methods that break security
policies. Network covert channels transfer information through networks in ways
that hide the fact that communication takes place (hidden information transfer).

• Covert channels embed information in
• header fields of protocol data units (protocol messages)
• the timing of protocol data units (e.g., inter-arrival times)

• We are not considering here covert channels that are constructed by exchanging
steganographic objects in application messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 280 / 295

271

Covert Channel Patterns

P1 Size Modulation Pattern
The covert channel uses the size of a header field or of a protocol message to
encode hidden information.

P2 Sequence Pattern
The covert channel alters the sequence of header fields to encode hidden
information.

P3 Add Redundancy Pattern
The covert channel creates new space within a given header field or within a
message to carry hidden information.

P4 PDU Corruption/Loss Pattern
The covert channel generates corrupted protocol messages that contain hidden
data or it actively utilizes packet loss to signal hidden information.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 281 / 295

272

Covert Channel Patterns

P5 Random Value Pattern
The covert channel embeds hidden data in a header field containing a “random”
value.

P6 Value Modulation Pattern
The covert channel selects one of values a header field can contain to encode a
hidden message.

P7 Reserved/Unused Pattern
The covert channel encodes hidden data into a reserved or unused header field.

P8 Inter-arrival Time Pattern
The covert channel alters timing intervals between protocol messages (inter-arrival
times) to encode hidden data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 282 / 295

273

Covert Channel Patterns

P9 Rate Pattern
The covert channel sender alters the data rate of a traffic flow from itself or a third
party to the covert channel receiver.

P10 Protocol Message Order Pattern
The covert channel encodes data using a synthetic protocol message order for a
given number of protocol messages flowing between covert sender and receiver.

P11 Re-Transmission Pattern
A covert channel re-transmits previously sent or received protocol messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 283 / 295

274

Anonymization Terminology

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 284 / 295

This section is based on: Andreas Pfitzmann, Marit Hansen: A Proposal for Talking about Privacy by
Data Minimization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity
Management, Aug. 10, 2010 (v.34)

https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

275

https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

Anonymity

Definition (anonymity)

Anonymity of a subject from an attacker’s perspective means that the attacker cannot
sufficiently identify the subject within a set of subjects, the anonymity set.

• All other things being equal, anonymity is the stronger, the larger the respective
anonymity set is and the more evenly distributed the sending or receiving,
respectively, of the subjects within that set is.

• Robustness of anonymity characterizes how stable the quantity of anonymity is
against changes in the particular setting, e.g., a stronger attacker or different
probability distributions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 285 / 295

276

Unlinkability and Linkability

Definition (unlinkability)

Unlinkability of two or more items of interest (IOIs) (e.g., subjects, messages, actions,
. . .) from an attacker’s perspective means that within the system, the attacker cannot
sufficiently distinguish whether these IOIs are related or not.

Definition (linkability)

Linkability of two or more items of interest (IOIs) (e.g., subjects, messages, actions,
. . .) from an attacker’s perspective means that within the system, the attacker can
sufficiently distinguish whether these IOIs are related or not.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 286 / 295

Anonymity can be expressed in terms of unlinkability:

• Sender anonymity of a subject means that to this potentially sending subject, each message is
unlinkable.

• Recipient anonymity of a subject means that to this potentially receiving subject, each message
is unlinkable.

• Relationship anonymity of a pair of subjects, the potentially sending subject and the potentially
receiving subject, means that to this potentially communicating pair of subjects, each message is
unlinkable.

277

Undetectability and Unobservability

Definition (undetectability)

Undetectability of an item of interest (IOI) from an attackers perspective means that
the attacker cannot sufficiently distinguish whether it exists or not.

Definition (unobservability)

Unobservability of an item of interest (IOI) means

• undetectability of the IOI against all subjects uninvolved in it and

• anonymity of the subject(s) involved in the IOI even against the other subject(s)
involved in that IOI.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 287 / 295

• Sender unobservability then means that it is sufficiently undetectable whether any sender within
the unobservability set sends. Sender unobservability is perfect if and only if it is completely
undetectable whether any sender within the unobservability set sends.

• Recipient unobservability then means that it is sufficiently undetectable whether any recipient
within the unobservability set receives. Recipient unobservability is perfect if and only if it is
completely undetectable whether any recipient within the unobservability set receives.

• Relationship unobservability then means that it is sufficiently undetectable whether anything is
sent out of a set of could-be senders to a set of could-be recipients.

278

Relationships

With respect to the same attacker, the following relationships hold:

• unobservability ⇒ anonymity

• sender unobservability ⇒ sender anonymity

• recipient unobservability ⇒ recipient anonymity

• relationship unobservability ⇒ relationship anonymity

We also have:

• sender anonymity ⇒ relationship anonymity

• recipient anonymity ⇒ relationship anonymity

• sender unobservability ⇒ relationship unobservability

• recipient unobservability ⇒ relationship unobservability

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 288 / 295

The usual concept to achieve undetectability of IOIs at some layer, e.g., sending meaningful messages,
is to achieve statistical independence of all discernible phenomena at some lower implementation layer.
An example is sending dummy messages at some lower layer to achieve e.g., a constant rate flow of
messages looking, by means of encryption, randomly for all parties except the sender and the recipi-
ent(s).

279

Pseudonymity

Definition (pseudonym)

A pseudonym is an identifier of a subject other than one of the subject’s real names.
The subject, which the pseudonym refers to, is the holder of the pseudonym.

Definition (pseudonymity)

A subject is pseudonymous if a pseudonym is used as identifier instead of one of its real
names. Pseudonymity is the use of pseudonyms as identifiers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 289 / 295

• Sender pseudonymity is defined as the sender being pseudonymous, recipient pseudonymity is
defined as the recipient being pseudonymous.

• A digital pseudonym can be realized as a public key to test digital signatures where the holder
of the pseudonym can prove holdership by forming a digital signature, which is created using the
corresponding private key. An example would be PGP keys.

• A public key certificate bears a digital signature of a so-called certification authority and provides
some assurance to the binding of a public key to another pseudonym, usually held by the same
subject. In case that pseudonym is the civil identity (the real name) of a subject, such a certificate
is called an identity certificate.

280

Identifiability and Identity

Definition (identifiability)

Identifiability of a subject from an attacker’s perspective means that the attacker can
sufficiently identify the subject within a set of subjects, the identifiability set.

Definition (identity)

An identity is any subset of attribute values of an individual person which sufficiently
identifies this individual person within any set of persons. So usually there is no such
thing as “the identity”, but several of them.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 290 / 295

• Identity can be explained, from a psychological perspective, as an exclusive perception of life,
integration into a social group, and continuity, which is bound to a body and – at least to some
degree – shaped by society.

• Identity can be explained and defined, from a more mathematical perspective, as a property of an
entity in terms of the opposite of anonymity and the opposite of unlinkability.

• Identity enables both to be identifiable as well as to link IOIs because of some continuity of life.

281

Identity Management

Definition (identity management)

Identity management means managing various partial identities (usually denoted by
pseudonyms) of an individual person, i.e., administration of identity attributes including
the development and choice of the partial identity and pseudonym to be (re-)used in a
specific context or role.

• A partial identity is a subset of attribute values of a complete identity, where a
complete identity is the union of all attribute values of all identities of this person.

• A pseudonym might be an identifier for a partial identity.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 291 / 295

Given the restrictions of a set of applications, identity management is called privacy-enhancing if it
sufficiently preserves unlinkability (as seen by an attacker) between the partial identities of an individual
person required by the applications.

282

Mixes and Onion Routing

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 292 / 295

283

Mix Networks

• A mix network uses special proxies called mixes to send date from a source to a
destination.

• The mixes filter, collect, recode, and reorder messages in order to hide
conversations. Basic operations of a mix:

1. Removal of duplicate messages (an attacker may inject duplicate message to infer
something about a mix.

2. Collection of messages in order to create an ideally large anonymity set.
3. Recoding of messages so that incoming and outgoing messages cannot be linked.
4. Reordering of messages so that order information cannot be used to link incoming

and outgoing messages.
5. Padding of messages so that message sizes do not reveal information to link

incoming and outgoing messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 293 / 295

Mix networks were introduced in 1981 as a technique to provide anonymous email delivery [6]. Mix
networks get their security from the mixing done by their component mixes, and may or may not use
route unpredictability to enhance security.

Notation:

A,B principals
M1,M2, . . . mixes
KX public key of X
K−1X private key of X
ki ephemeral symmetric keys
Ni nonces
m message

• Sender anonymity: (A→M1 →M2 → B)

A→M1 : {N1,M2, {N2, B, {m}KB
}KM2

}KM1
M1 extracts M2

M1 →M2 : {N2, B, {m}KB
}KM2

M2 extracts B

M2 → B : {m}KB
B extracts the message m

• Receiver anonymity: (A→M1 →M2 → B)

The receiver B chooses a set a of mixes and for every mix an ephemeral symmetric key ki. The
receiver then generates a return address R:

R = {k0,M1, {k1,M2, {k2, B}KM2
}KM1

}KA

The return address is sent to A as described above:

B →M2 : {N2,M1, {N1, A, {R}KA
}KM1

}KM2
M2 extracts M1

M2 →M1 : {N1, A, {R}KA
}KM1

M1 extracts A

M1 → A : {R}KA
A extracts the return address R

The sender A extracts k0 from R and sends the following to M1:

A→M1 : {m}k0 , {k1,M2, {k2, B}KM2
}KM1

M1 extracts k1 and M2

M1 →M2 : {{m}k0
}k1

, {k2, B}KM2
M2 extracts k2 and B

M2 → B : {{{m}k0
}k1
}k2

B extracts the message m

284

285

Onion Routing

• A message m it sent from the source S to the destination T via an overlay network
consisting of the intermediate routers R1, R2, . . . , Rn, called a circuit.

• A message is cryptographically wrapped multiple times such that every router R
unwraps one layer and thereby learns to which router the message needs to be
forwarded next.

• To preserve the anonymity of the sender, no node in the circuit is able to tell
whether the node before it is the originator or another intermediary like itself.

• Likewise, no node in the circuit is able to tell how many other nodes are in the
circuit and only the final node, the ”exit node”, is able to determine its own
location in the chain.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 294 / 295

Onion routing systems primarily get their security from choosing routes that are difficult for the adversary
to observe.

286

Tor

• Tor is an anonymization network operated by volunteers supporting the Tor project.

• Every Tor router has a long-term identity key and a short-term onion key.

• The identity key is used to sign TLS certificates and the onion key is used to
decrypt messages to setup circuits and ephemeral keys.

• TLS is used to protect communication between onion routers.

• Directory servers provide access to signed state information provided by Tor routers.

• Applications build circuits based on information provided by directory servers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 295 / 295

A first working version of Tor was announced in 2002. The Tor project receive initially funding from US
government organizations such as the Defense Advanced Research Projects Agency (DARPA). Since
2006, the Tor projekt is supported by The Tor Project, Inc, a non-profit organization. The Tor project
web site is at https://www.torproject.org/. A technical description of the second version of Tor can
be found in [8].

Tor aims at protecting the traffic in transit, it is of limited help if application protocols running over
Tor circuits leak information that allows to link traffic to identities. Since Tor does aim at supporting
interactive applications, it is in general subject to traffic analysis attacks and in particular timing analysis
(where traffic and server traces are linked based on timing properties).

Due to the Tor design, exit nodes get access to the original messages. Hence, in order to be protected
against compromised exist nodes, it is still crucial to use end-to-end encryption with Tor.

287

https://www.torproject.org/

References

[1] M. Abadi and D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148(1), January 1999.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy of De-
pendable and Secure Computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, January 2004.

[3] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM Operating Systems
Review, 23(5):1–13, 1989.

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP Message Format. RFC
4880, PGP Corporation, IKS GmbH, November 2007.

[5] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computing Systems, 3(1):63–75, 1985.

[6] D.L. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communi-
cations of the ACM, 24(2):84–88, February 1981.

[7] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246,
Independent, RTFM, August 2008.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion Router. In
Proc. of the 13th USENIX Security Symposium, San Diego, August 2004. USENIX.

[9] M.J. Dworkin, E.B. Barker, J.R. Nechvatal, J. Foti, L.E. Bassham, E. Roback, and J.F. Dray. Speci-
fication of the advanced encryption standard (aes). Federal information processing standard (fips),
National Institute of Standards and Technology (NIST).

[10] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576–580, October 1969.

[11] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666–
677, August 1978.

[12] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, online edition, May 2015.

[13] A. Kehne, J. Schönwälder, and H. Langendörfer. A Nonce-Based Protocol for Multiple Authentica-
tions. Operating System Review, 26(4):84–89, October 1992.

[14] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications
of the ACM, 21(7), July 1978.

[15] N. Modadugu and E. Rescorla. The Design and Implementation of Datagram TLS. In Proc. Network
and Distributed System Security Symposium, San Diego, February 2004.

[16] N. Provos and P. Honeyman. Hide and Seek: An Introduction to Steganography. IEEE Security
and Privacy, 1(3), June 2003.

[17] M. Raynal. About logical clocks in distributed systems. Operating Systems Review, 26(1):41–48,
1992.

[18] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 6347, RTFM, Google,
January 2012.

[19] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2 edition, 2000.

[20] S. Wendzel W. Mazurczyk. Information Hiding: Challenges for Forensic Experts. Communications
of the ACM, 61(1):86–94, January 2018.

[21] S. Wendzel, S. Zander, B. Fechner, and C. Herdin. Pattern-Based Survey and Categorization of
Network Covert Channel Techniques. ACM Computing Surveys, 47(3), April 2015.

288

	I Introduction
	Motivation
	Classic Computing Disasters
	Dependability Concepts and Terminology
	Dependability Metrics

	II Software Engineering
	General Aspects
	Software Testing
	Software Specification
	Software Verification

	III Concurrency and Distributed Algorithms
	Concurrency Overview
	Model of Distributed Algorithms
	Events, Causality, Logical Clocks
	Stable Properties and Snapshots
	Fault Tolerance and Broadcasts
	Communicating Sequential Processes

	IV Cryptography
	Cryptography Primer
	Symmetric Encryption Algorithms and Block Ciphers
	Asymmetric Encryption Algorithms
	Cryptographic Hash Functions
	Digital Signatures and Certificates
	Key Management Schemes

	V Secure Communication Protocols
	Pretty Good Privacy
	Transport Layer Security
	Secure Shell

	VI Information Hiding and Privacy
	Steganography and Watermarks
	Covert Channels
	Anonymization Terminology
	Mixes and Onion Routing

