Problem 2.1: partial correctness of the gcd algorithm
Prove step-by-step the partial correctness of the following program using Hoare Logic. The program calculates the greatest common divisor (gcd). You can assume $\vdash \operatorname{gcd}(a, 0)=a$ and \vdash $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.

```
Precondition: \(\{X=x \wedge Y=y \wedge x>0 \wedge y>0\}\)
    while \(Y \neq 0\) do
        \(Z:=X \% Y\)
        \(X:=Y\)
        \(Y:=Z\)
    od
```

Postcondition: $\{X=\operatorname{gcd}(x, y)\}$

Problem 2.2: total correctness of the gcd algorithm
Prove the total corretness of the following program by annotating the program and deriving the verification conditions (prove goals). The program calculates the greatest common divisor (gcd). You can assume $\vdash \operatorname{gcd}(a, 0)=a$ and $\vdash g c d(a, b)=g c d(b, a)$.

```
Precondition: \(\{X=x \wedge Y=y \wedge x>0 \wedge y>0\}\)
    while \(Y \neq 0\) do
        \(Z:=X \% Y\)
        \(X:=Y\)
        \(Y:=Z\)
    od
Postcondition: \(\{X=\operatorname{gcd}(x, y)\}\)
```

a) Provide the annotated program.
b) Derive the verification conditions.
c) Prove the verification conditions.

