SADS 2018 Problem Sheet \#3

Problem 3.1: lamport clocks and vector clocks
Let $e \prec f$ (with $e, f \in E$) be the causal order relation on the set of events E with n concurrent processes. Let $\Theta_{L}: E \mapsto \mathbb{N}$ denote a Lamport clock and $\Theta_{V}: E \mapsto \mathbb{N}^{n}$ denote a vector clock.
a) Given two events $e, f \in E$ with $e \neq f$ and with $\Theta_{L}(e)<\Theta_{L}(f)$, which of the following statements are true or false? Provide a reasoning.
(i) $\Theta_{L}(e)<\Theta_{L}(f) \Longrightarrow e \prec f$
(ii) $\Theta_{L}(e)<\Theta_{L}(f) \Longrightarrow f \prec e$
b) Given two events $e, f \in E$ with $e \neq f$ and with $\Theta_{V}(e)<\Theta_{V}(f)$, which of the following statements are true or false? Provide a reasoning.
(i) $\Theta_{V}(e)<\Theta_{V}(f) \Longrightarrow e \prec f$
(ii) $\Theta_{V}(e)<\Theta_{V}(f) \Longrightarrow f \prec e$
c) Given two concurrent events $e, f \in E$ with $e \neq f$. How can one determine from the vector clock values $\Theta_{V}(e)$ and $\Theta_{V}(f)$ that e and f are concurrent?

Problem 3.2: logical clocks and consistent cuts
Consider a distributed system with three processes that proceeds as shown below:

a) Determine the Lamport clock values for all events.
b) Determine the vector clock values for all events.
c) Are the cuts C_{1} and C_{2} consistent cuts? Explain why or why not.

Problem 3.3: unisex bathroom problem using communicating sequential processes
The university agreed to establish unisex bathrooms, provided that the following constraints can be maintained:

- There cannot be men and women in the bathroom at the same time.
- There should never be more than three students squandering time in the bathroom.

Model the situation using communicating sequential processes for N female students and M male students. Make sure your definitions are both syntactically and semantically correct.

