SADS 2018 Problem Sheet \#4

Problem 4.1: substitution-permutation network
$(4+2+3=9$ points $)$
Consider a substitution-permutation network implementing an 8-bit block cipher with keys of a length of 32 bits.

The substitution step uses 4-bit S-boxes applied to the lower and upper 4 bits of an 8 -bit word. The substitution $S:\{0,1\}^{4} \mapsto\{0,1\}^{4}$ is given by $x \mapsto((x+1) \cdot 7) \bmod (17-1)$. This is a bijection of $\{0,1\}^{4}$, where 4 -bit chunks are seen as natural numbers via their binary encoding.

The permutation step uses an 8-bit P-box $P:\{0,1\}^{8} \mapsto\{0,1\}^{8}$, which does a cyclic 2 -bit left-shift of its argument.

The substitution-permutation network uses the following rounds:

- Round 0: Key step with the first (most significant) 8 bits of the key.
- Round 1: Substitution step followed by a permutation step follows by a key step with the next 8 bits of the key.
- Round 2: Substitution step followed by a permutation step follows by a key step with the next 8 bits of the key.
- Round 3: Substitution step followed by a key step with the last (least significant) 8 bits of the key.
a) Encrypt the cleartext "aba" (0×616261) in electronic codebook mode with the key 0×98267351.
b) Encrypt the cleartext "hello world" ($0 x 68656 \mathrm{c} 6 \mathrm{c} 6 \mathrm{f} 20776 \mathrm{f} 726 \mathrm{c} 64$) in cipher block chaining mode with the key 0×98267351 and the initialization vector 0×42.
c) Decrypt the ciphertext $0 \times 3451 \mathrm{f6fd} 3 \mathrm{~b} 6126 \mathrm{e} 0 \mathrm{ae} 5815$ which has been produced using cipher block chaining mode with the key 0×98267351 and the initialization vector 0×42.

While the calculation can in principle be done on paper, it may be more instructive for computer science students to write a small C program to implement the block cipher and the modes of operation. If you write a C program, please hand it in so we may be able to check where your calculation goes wrong. And recall what we talked about at the beginning of the semester: consider to write test cases to make sure your program is at least handling your test cases correctly.

Problem 4.2: proof of work
(1 point)
Cryptographic hash functions can be used for a proof of work, also known as a cryptographic puzzle. The challenge is to find a random value that appended to a given message causes the the hash value to have a certain format, e.g., N leading bits of 0 .

Your task is to find a random sequence of 64 ASCII letters or digits where the SHA-256 checksum begins with 12 bits (three digits in hexadecimal notation) of 0 s . (Since your result is a random solution, we expect it to be different from the results produced by other students.)

