
Secure and Dependable Systems

Jürgen Schönwälder

Jacobs University Bremen

May 18, 2018

http://cnds.eecs.jacobs-university.de/courses/sads-2018

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 1 / 295

http://cnds.eecs.jacobs-university.de/courses/sads-2018

Part: Administrivia

1 Course Objectives and Grading

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 2 / 295

Course Objectives and Grading

1 Course Objectives and Grading

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 3 / 295

Topics and learning goals

• This course introduces (formal) methods for analyzing and assuring safety and
security of software systems.

• Definition of concepts such as dependability, reliability, safety, and security of
software systems

• Introduction of paradigms of safety/security analysis such as
• formal testing (code coverage),
• static program analysis (control/data flow analysis and abstract interpretation),
• model checking (computational tree logic),
• and program verification (Hoare calculus).

• Introduction into cryptography and its application for building secure systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 4 / 295

Grading Scheme

• Assignments (30%)
• Learning by solving assignments
• Test whether you can apply concepts learned

• Mid-term examination (30%)
• Covers the first half of the course
• Closed book (and closed computers)

• Final examination (40%)
• Covers the whole course
• Closed book (and closed computers)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 5 / 295

Teaching and learning strategy

• Homework assignments: Reinforce and apply what is taught in class

• Assignments will be small individual assignments (but may take time to solve)

• Consider forming study groups. It helps to discuss questions and course material in
study groups or to explore different directions to solve an assignment. However,
solutions must be individual submissions. (Discuss the general problem in a study
group, workout the details of the solution yourself.)

• You can audit the course. To earn an audit, you have to pass an oral interview
about key concepts introduced in the course at the end of the semester.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 6 / 295

Organizational aspects and tutorials

• All homework assignments will be linked to the course web page.

• Solutions for assignments will be submitted using the online grader system or the
Moodle system (we will decide as we go).
https://grader.eecs.jacobs-university.de/

https://moodle.jacobs-university.de/

• Feedback and grades will be accessible via the grader of the Moodle system as well.

• Teaching assistant will be available to discuss course topics and or questions
related to homeworks or to get help during exam preparations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 7 / 295

https://grader.eecs.jacobs-university.de/
https://moodle.jacobs-university.de/

Rules of the Game

1 Course Objectives and Grading

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 8 / 295

Code of Academic Integrity

• Jacobs University has a “Code of Academic Integrity”
• this is a document approved by the Jacobs community
• you have signed it during enrollment
• it is a law of the university, we take it seriously

• It mandates good behaviours from faculty and students and it penalizes bad ones:
• honest academic behavior (e.g., no cheating)
• respect and protect intellectual property of others (e.g., no plagiarism)
• treat all Jacobs University members equally (e.g., no favoritism)

• It protects you and it builds an atmosphere of mutual respect
• we treat each other as reasonable persons
• the other’s requests and needs are reasonable until proven otherwise
• if others violate our trust, we are deeply disappointed (may be leading to severe and

uncompromising consequences)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 9 / 295

Academic Integrity Committee (AIC)

• The Academic Integrity Committee is a joint committee by students and faculty.

• Mandate: to hear and decide on any major or contested allegations, in particular,
• the AIC decides based on evidence in a timely manner,
• the AIC makes recommendations that are executed by academic affairs,
• the AIC tries to keep allegations against faculty anonymous for the student.

• Every member of Jacobs University (faculty, student, . . .) can appeal any
academic integrity allegations to the AIC.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 10 / 295

Cheating

• There is no need to cheat, cheating prevents you from learning.

• Useful collaboration versus cheating:
• You will be required to hand in your own original code/text/math for all assignments
• You may discuss your homework assignments with others, but if doing so impairs

your ability to write truly original code/text/math, you will be cheating
• Copying from peers, books or the Internet is plagiarism unless properly attributed

• What happens if we catch you cheating?
• We will confront you with the allegation (you can explain yourself)
• If you admit or are silent, we impose a grade sanction and we notify the student

records office
• Repeated infractions to go the AIC for deliberation

• Note: Both active (copying from others) and passive cheating (allowing others to
copy) are penalized equally

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 11 / 295

Deadlines

• Deadlines will be strict (don’t bother to ask for extensions)

• Make sure you submit the right document. We grade what was submitted, not
what could have been submitted.

• Submit early - avoid last minute changes or software/hardware problems.

• Official excuses by the student records office will extend the deadlines - but not
more than the time covered by the excuse.

• A word on medical excuses: Use them when you are ill. Do not use them as a tool
to gain more time.

• You want to be taken serious if you are seriously ill. Misuse of excuses can lead to
a situation where you are not taken very serious when you deserve to be taken
serious.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 12 / 295

Culture of Questions, Answers, and Explanations

• Answers to questions require an explanation even if this is not stated explicitly
• A question like ’Does this algorithm always terminate?’ can in principle be answered

with ’yes’ or ’no’.
• We expect, however, that an explanation is given why the answer is ’yes’ or ’no’,

even if this is not explicitly stated.

• Answers should be written in your own words
• Sometimes it is possible to find perfect answers on Wikipedia or Stack Exchange or

in good old textbooks.
• Simply copying the answer of someone else is plagiarism.
• Copying the answer and providing the reference solves the plagiarism issue but

usually does not show that you understood the answer.
• Hence, we want you to write the answer in your own words.
• Learning how to write concise and precise answers is an important academic skill.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 13 / 295

Culture of Interaction

• I am here to help you learn the material.

• If things are unclear, ask questions.

• If I am going too fast, tell me.

• If I am going too slow, tell me.

• Discussion in class is most welcome - don’t be shy.

• Discussion in tutorials is even more welcome - don’t be shy.

• If you do not understand something, chances are pretty high your neighbor does
not understand either.

• Don’t be afraid of asking teaching assistants or myself for help and additional
explanations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 14 / 295

Resources

1 Course Objectives and Grading

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 15 / 295

Study Material and Forums

• There is no required textbook.

• The slides and notes are available on the course web page.
http://cnds.eecs.jacobs-university.de/courses/sads-2018

• We will be using Moodle and it hosts a forum for this course.
https://moodle.jacobs-university.de/

• General questions should be asked on the Moodle forum.
• Faster responses since many people can answer
• Better responses since people can collaborate on the answer

• For individual questions, see me at my office (or talk to me after class or wherever
you find me).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 16 / 295

http://cnds.eecs.jacobs-university.de/courses/sads-2018
https://moodle.jacobs-university.de/

Part: Introduction

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 17 / 295

Motivation

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 18 / 295

Can we trust computers?

• How much do you trust (to function correctly)
• personal computer systems and mobile phones?
• cloud computing systems?
• planes, trains, cars, ships?
• navigation systems?
• communication networks (telephones, radios, tv)?
• power plants and power grids?
• banks and financial trading systems?
• online shopping and e-commerce systems?
• social networks and online information systems?
• information used by insurance companies?
• . . .

• Distinguish between what your intellect tells you to do and what you actually do.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 19 / 295

Importance of Security and Dependability

• Software development processes are often too focused on functional aspects and
user interface aspects (since this is what sells products).

• Aspects such as reliability, robustness against failures and attacks, long-term
availability of the software and data, integrity of data, protection of data against
unauthorized access, etc. are often not given enough consideration.

• Software failures can not only have significant financial consequences, they can also
lead to environmental damages or even losses of human lifes.

• Due to the complexity of computing systems, the consequences of faults in one
component are very difficult to estimate.

• Security and dependability aspects must be considered during all phases of a
software development project.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 20 / 295

Classic Computing Disasters

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 21 / 295

Spectre: Vulnerability of the Year 2018

unsigned char array1[16] /* base array */

unsigned int array1_size = 16; /* size of the base array */

int x; /* the out of bounds index */

unsigned char array2[256 * 256]; /* instrument for timing channel attack */

// ...

if (x < array1_size) {

y = array2[array1[x] * 256];

}

• Is your laptop vulnerable? Check now!

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 22 / 295

Spectre: Memory and CPU Caches

• Memory in modern computing systems is layered:

• Main memory is large but relatively slow compared to the speed of the CPUs

• CPUs have several layers of CPU caches, each layer faster but smaller

• CPU caches are not accessible from outside of the CPU

• When a CPU instruction needs data that is in the main memory but not in the
caches, then the CPU has to wait quite a while. . .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 23 / 295

Spectre: Timing Side Channel Attack

• A side-channel attack is any attack based on information gained from the physical
implementation of a computer system (e.g., timing, power consumption), rather
than weaknesses in an implemented algorithm itself.

• A timing side-channel attack infers data from timing observations.

• Even though the CPU cache can’t be read directly, it is possible to infer from
timing observations whether certain data is in a CPU cache or not.

• By accessing specific uncached memory locations and later checking via timing
observations whether these locations are cached, it is possible to communicate data
from the CPU using a cache timing side channel attack.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 24 / 295

Spectre: Speculative Execution

• If a CPU has to wait for slow memory, then simply guess a value and continue
excution speculatively; be prepared to rollback the speculative computation if the
guess later turns out to be wrong; if the guess was correct, commit the speculative
computation and move on.

• Speculative execution is in particular interesting for branch instructions that depend
on memory cell content that is not found in the CPU caches

• Some CPUs collect statistics about past branching behavior in order to do an
informed guess. This means we can train the CPUs to make a certain guess.

• Cache state is not restored during the rollback of a speculative execution.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 25 / 295

Spectre: Reading Arbitrary Memory

• Algorithm:

1. create a small array array1

2. choose an index x such that array1[x] is out of bounds
3. trick the CPU into speculative execution (make it to read array1_size from slow

memory and to guess wrongly)
4. create another uncached memory array called array2 and read

array2[array1[x]] to load this cell into the cache
5. read the entire array2 and observe the timing; it will reveal what the value of

array1[x] was

• This could be done with JavaScript running in your web browser; the easy “fix”
was to make the JavaScript time API less precise, thereby killing the timing side
channel.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 26 / 295

Dependability Concepts and Terminology

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 27 / 295

System and Environment and System Boundary

Definition (system, environment, system boundary)

A system is an entity that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world with its natural phenomena. The
other systems are the environment of the given system. The system boundary is the
common frontier between the system and its environment.

• Note that systems almost never exist in isolation.

• We often forget to think about all interactions of a system with its environment.

• Well-defined system boundaries are essential for the design of complex systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 28 / 295

Components and State

Definition (components)

The structure of a system is composed out of a set of components, where each
component is another system. The recursion stops when a component is considered
atomic.

Definition (total state)

The total state of a given system is the set of the following states: computation,
communication, stored information, interconnection, and physical condition.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 29 / 295

Function and Behaviour

Definition (function and functional specification)

The function of a system is what the system is intended to do and is described by the
functional specification.

Definition (behaviour)

The behaviour of a system is what the system does to implement its function and is
described by a sequence of states.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 30 / 295

Service and Correct Service

Definition (service)

The service delivered by a system is its behaviour as it is perceived by a its user(s); a
user is another system that receives service from the service provider.

Definition (correct service)

Correct service is delivered when the service implement the system function.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 31 / 295

Failure versus Error versus Fault

Definition (failure)

A service failure, often abbreviated as failure, is an event that occurs when the delivered
service deviates from correct service.

Definition (error)

An error is the part of the total state of the system that may lead to its subsequent
service failure.

Definition (fault)

A fault is the adjudged or hypothesized cause of an error. A fault is active when it
produces an error, otherwise it is dormant.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 32 / 295

Dependability

Definition (dependability - original)

Dependability is the ability of a system to deliver service than can justifiably be trusted.

Definition (dependability - revised)

Dependability of a system is the ability to avoid service failures that are more frequent
and more severe than is acceptable.

• The revised definition provides a criterion for deciding if a system is dependable.

• Trust can be understood as a form of accepted dependance.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 33 / 295

Dependability Attributes

Definition (dependability attributes)

Dependability has the following attributes:

• Availability : readiness to deliver correct service

• Reliability : continuity of correct service

• Safety : absence of catastrophic consequences on the user(s) and the environment

• Integrity : absence of improper system alterations

• Maintainability : ability to undergo modifications and repairs

• Confidentiality : absence of unauthorized disclosure of information

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 34 / 295

Dependability and Security

Definition (security)

Security is a composite of the attributes of confidentiality, integrity, and availability.

• Note that using these definitions, security can be considered a subfield of
dependability. This does, however, not reflect how research communities have
organized themselves.

• As a consequence, terminology is generally not consistent. Security people, for
example, talk about vulnerabilities while dependability people talk about dormant
faults.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 35 / 295

Fault Prevention

Definition (fault prevention)

Fault prevention aims at preventing the occurance or introduction of faults.

• Application of good software engineering techniques and quality management
techniques during the entire development process.

• Hardening, shielding, etc. of physical systems to prevent physical faults.

• Maintenance and deployment procedures (e.g., firewalls, installation in access
controlled rooms, backup procedures) to prevent malicious faults.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 36 / 295

Fault Tolerance

Definition (fault tolerance)

Fault tolerance aims at avoiding service failures in the presence of faults.

• Error detection aims at detecting errors that are present in the system so that
recovery actions can be taken.

• Recovery handling eliminates errors from the system by rollback to an error-free
state or by error compensation (exploiting redundancy) or by rollforward to an
error-free state.

• Fault handling prevents located faults from being activated again.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 37 / 295

Fault Removal

Definition (fault removal)

Fault removal aims at reducing the number and severity of faults.

• Fault removal during the development phase usually involves verification checks
whether the system satisfies required properties.

• Fault removal during the operational phase is often driven by errors that have been
detected and reported (corrective maintenance) or by faults that have been
observed in similar systems or that were found in the specification but which have
not led to errors yet (preventive maintenance).

• Sometimes it is impossible or too costly to remove a fault but it is possible to
prevent the activation of the fault or to limit the possible impact of the fault, i.e,
its severity.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 38 / 295

Fault Forecasting

Definition (fault forecasting)

Fault forecasting aims at estimating the present number, the future incidence, and the
likely consequences of faults.

• Qualitative evaluation identifies, classifies, and ranks the failure modes, or the
event combinations that would lead to failures.

• Quantitative evaluation determines the probabilities to which some of the
dependability attributes are satisfied.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 39 / 295

Dependability Metrics

4 Motivation

5 Classic Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 40 / 295

Reliability and MTTF/MTBF/MTTR

Definition (reliability)

The reliability R(t) of a system S is defined as the probability that S is delivering
correct service in the time interval [0, t].

• A metric for the reliability R(t) for non repairable systems is the Mean Time To
Failure (MTTF), normally expressed in hours.

• A metric for the reliability R(t) for repairable systems is the Mean Time Between
Failures (MTBF), normally expressed in hours.

• The mean time it takes to repair a repairable system is called the Mean Time To
Repair (MTTR), normally expressed in hours.

• These metrics are valid in the steady-state, i.e., when the system does not change
or evolve.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 41 / 295

Availability

Definition (availability)

The availability A(t) of a system S is defined as the probability that S is delivering
correct service at time t.

• A metric for the average, steady-state availability of a repairable system is
A = MTBF/(MTBF + MTTR), normally expressed in percent.

• A certain percentage-value may be more or less useful depending on the “failure
distribution” (the “burstiness” of the failures).

• Critical computing systems usually have to guarantee a certain availability.
Availability requirements are often fixed in service level agreements.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 42 / 295

Availability and the “number of nines”

Availability Downtime per year Downtime per month Downtime per week Downtime per day

90% 36.5 d 72 h 16.8 h 2.4 h
99% 3.65 d 7.20 h 1.68 h 14.4min
99.9% 8.76 h 43.8min 10.1min 1.44min
99.99% 52.56min 4.38min 1.01min 8.64 s
99.999% 5.26min 25.9 s 6.05 s 864.3ms
99.9999% 31.5 s 2.59 s 604.8ms 86.4ms

• It is common practice to express the degrees of availability by the number of nines.
For example, “5 nines availability” means 99.999% availability.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 43 / 295

Safety

Definition (safety)

The safety S(t) of a system S is defined as the probability that S is delivering correct
service or has failed in a manner that does cause no harm in [0, t].

• A metric for safety S(t) is the Mean Time To Catastrophic Failure (MTTC),
defined similarly to MTTF and normally expressed in hours.

• Safety is reliability with respect to malign failures.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 44 / 295

Part: Software Engineering

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 45 / 295

General Aspects

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 46 / 295

Definitions of Software Engineering

Definition
The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software. (IEEE Standard Glossary of Software
Engineering Terminology)

Definition
The establishment and use of sound engineering principles in order to economically
obtain software that is reliable and works efficiently on real machines. (Fritz Bauer)

Definition
An engineering discipline that is concerned with all aspects of software production. (Ian
Sommerville)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 47 / 295

Good Software Development Practices

• Coding Styles

• Documentation

• Version Control Systems

• Code Reviews and Pair Programming

• Automated Build and Testing Procedures

• Issue Tracking Systems

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 48 / 295

Choice of Programming Languages

• Programming languages serve different purposes and it is important to select a
language that fits the given task

• Low-level languages can be very efficient but they tend to allow programmers to
make more mistakes

• High-level languages and in particular functional languages can lead to very
abstract but also very robust code

• Concurrency is important these days and the mechanisms available in different
programming languages can largely impact the robustness of the code

• Programming languages must match the skills of the developer team; introducing a
new languages requires to train developers

• Maintainability of code must be considered when programming languages are
selected

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 49 / 295

Defensive Programming

• It is common that functions are only partially defined.

• Defensive programming requires that the preconditions for a function are checked
when a function is called.

• For some complex functions, it might even be useful to check the postcondition,
i.e., that the function did achieve the desired result.

• Many programming languages have mechanisms to insert assertions into the course
code in order to check pre- and postconditions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 50 / 295

Software Testing

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 51 / 295

Unit and Regression Testing

• Unit testing
• Testing of units (abstract data types, classes, . . .) of source code.
• Usually supported by special unit testing libraries.

• Regression testing
• Testing of an entire program to ensure that a modified version of a program still

handles all input correctly that an older version of a program handled correctly.

• A software bug reported by a customer is primarily a weakness of the regression
test suite.

• Modern agile software development techniques rely on unit testing and regression
testing techniques.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 52 / 295

Test Coverages

• The test coverage is a measure used to describe the degree to which the source
code of a program is executed when a particular test suite runs.

• Function coverage:
• Has each function in the program been called?

• Statement coverage:
• Statement coverage: Has each statement in the program been executed?

• Branch coverage:
• Has each branch of each control structure been executed?

• Predicate coverage:
• Has each Boolean sub-expression evaluated both to true and false?

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 53 / 295

Mutation Testing

• Mutation testing evaluates the effectiveness of a test suite.

• The source code of a program is modified algorithmically by applying mutation
operations in order to produce mutants.

• A mutant is “killed” by a test suite if tests fail for the mutant. Mutants that are
not “killed” indicate that the test suite is incomplete.

• Mutation operators often mimic typical programming errors:
• Statement deletion, duplication, reordering, . . .
• Replacement of arithmetic operations with others
• Replacement of boolean operations with others
• Replacement of comparison relations with others
• Replacement of variables with others (of the same type)

• The mutation score is the number of mutants killed normalized by the number of
mutants.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 54 / 295

Fuzzying

• Fuzzying or fuzz testing feeds invalid, unexpected, or simply random data into
computer programs.
• Some fuzzers can generate input based on their awareness of the structure of input

data.
• Some fuzzers can adapt the input based on their awareness of the code structure

and which code paths have already been covered.

• The “american fuzzy lop” (ALF) uses genetic algorithms to adjust generated inputs
in order to quickly increase code coverage.

• AFL has detected a significant number of serious software bugs.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 55 / 295

Fault Injection

• Fault injection techniques inject faults into a program by either
• modifying source code (very similar to mutation testing) or
• injecting faults at runtime (often via modified library calls).

• Fault injection can be highly effective to test whether software deals with rare
failure situations, e.g., the injection of system calls failures that usually work.

• Fault injection can be used to evaluate the robustness of the communication
between programs (deleting, injecting, reordering messages).

• Can be implemented using library call interception techniques.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 56 / 295

Multiple Independent Computations

• Dionysius Lardner 1834:

The most certain and effectual check upon errors which arise in the
process of computation is to cause the same computations to be made by
separate and independent computers; and this check is rendered still more
decisive if they make their computations by different methods.

• Charles Babbage, 1837:

When the formula to be computed is very complicated, it may be
algebraically arranged for computation in two or more totally distinct
ways, and two or more sets of cards may be made. If the same constants
are now employed with each set, we may then be quite sure of the
accuracy of them all.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 57 / 295

Software Specification

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 58 / 295

Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 59 / 295

Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q}

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 60 / 295

Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that always a result is produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 61 / 295

Hoare Notation Conventions

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of particular
variables are X , Y , R etc.

2. The symbols E , E1, . . . , En stand for arbitrary expressions (or terms). These are
expressions like X + 1,

√
2 etc., which denote values (usually numbers).

3. The symbols S , S1, . . . , Sn stand for arbitrary statements. These are conditions
like X < Y , X 2 = 1 etc., which are either true or false.

4. The symbols C , C1 , . . . , Cn stand for arbitrary commands of our programming
language; these commands are described in the following slides.

• We will use lowercase letters such as x and y to denote auxiliary variables (e.g., to
denote values stored in variables).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 62 / 295

Hoare Assignments

• Syntax: V := E

• Semantics: The state is changed by assigning the value of the term E to the
variable V . All variables are assumed to have global scope.

• Example: X := X + 1

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 63 / 295

Hoare Skip Command

• Syntax: SKIP

• Semantics: Do nothing. The state after execution the command SKIP is the same
as the state before executing the command SKIP .

• Example: SKIP

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 64 / 295

Hoare Command Sequences

• Syntax: C1; . . . ; Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Example: R := X ; X := Y ; Y := R

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 65 / 295

Hoare Conditionals

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Example: IF X < Y THEN M := Y ELSE M := X FI

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 66 / 295

Hoare While Loop

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• Example: WHILE ¬(X = 0) DO X := X − 2 OD

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 67 / 295

Termination can be Tricky

1: function collatz(X)
2: while X > 1 do
3: if (X %2) 6= 0 then
4: X ← (3 · X) + 1
5: else
6: X ← X/2
7: end if
8: end while
9: return X

10: end function

• Does the function shown above terminate for all values X ?

• Collatz conjecture: The program will eventually return the number 1, regardless of
which positive integer is chosen initially.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 68 / 295

Specification can be Tricky

• Specification for the maximum of two variables:

{T} C {Y = max(X ,Y)}

• C could be:

IF X > Y THEN Y := X ELSE SKIP FI

• But C could also be:

IF X > Y THEN X := Y ELSE SKIP FI

• And C could also be:

Y := X

• Use auxiliary variables x and y to associate Q with P :

{X = x ∧ Y = y} C {Y = max(x , y)}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 69 / 295

Software Verification

8 General Aspects

9 Software Testing

10 Software Specification

11 Software Verification

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 70 / 295

Floyd-Hoare Logic

• Floyd-Hoare Logic is a set of inference rules that enable us to formally proof partial
correctness of a program.

• If S is a statement, we write ` S to mean that S has a proof.

• The axioms of Hoare logic will be specified with a notation of the following form:

` S1, . . . ,` Sn

` S

• The conclusion S may be deduced from ` S1, . . . ,` Sn, which are the hypotheses
of the rule.

• The hypotheses can be theorems of Floyd-Hoare logic or they can be theorems of
mathematics.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 71 / 295

Assignment Axiom

• Let P[E/V] (P with E for V) denote the result of substituting the term E for all
occurances of the variable V in the statement P .

• An assignment assigns a variable V an expression E :

` {P[E/V]} V := E {P}

• Example:
{X + 1 = n + 1} X := X + 1 {X = n + 1}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 72 / 295

Precondition Strengthening

• If P implies P ′ and we have shown {P ′} C {Q}, then {P} C {Q} holds as well:

` P → P ′, ` {P ′} C {Q}
` {P} C {Q}

• Example: Since ` X = n→ X + 1 = n + 1, we can strengthen

` {X + 1 = n + 1} X := X + 1 {X = n + 1}

to
` {X = n} X := X + 1 {X = n + 1}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 73 / 295

Postcondition Weakening

• If Q ′ implies Q and we have shown {P} C {Q ′}, then {P} C {Q} holds as well:

` {P} C {Q ′}, ` Q ′ → Q

` {P} C {Q}

• Example: Since X = n + 1→ X > n, we can weaken

` {X = n} X := X + 1 {X = n + 1}

to
` {X = n} X := X + 1 {X > n}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 74 / 295

Specification Conjunction and Disjunction

• If we have shown {P1} C {Q1} and {P2} C {Q2}, then {P1 ∧ P2} C {Q1 ∧ Q2}
holds as well:

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∧ P2} C {Q1 ∧ Q2}

• We get a similar rule for disjunctions:

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∨ P2} C {Q1 ∨ Q2}

• These rules allows us to prove ` {P} C {Q1 ∧ Q2} by proving both ` {P} C {Q1}
and ` {P} C {Q2}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 75 / 295

Skip Command Rule

• Syntax: SKIP

• Semantics: Do nothing. The state after execution the command SKIP is the same
as the state before executing the command SKIP .

• Skip Command Rule:

` {P} SKIP {P}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 76 / 295

Sequence Rule

• Syntax: C1; . . . ; Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Sequence Rule:

` {P} C1 {R}, ` {R} C2 {Q}
` {P} C1; C2 {Q}

The sequence rule can be easily generalized to n > 2 commands:

` {P} C1 {R1}, ` {R1} C2 {R2}, . . . , ` {Rn−1} Cn {Q}
` {P} C1; C2; . . . ; Cn {Q}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 77 / 295

Conditional Command Rule

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Conditional Rule:

` {P ∧ S} C1 {Q}, ` {P ∧ ¬S} C2 {Q}
` {P} IF S THEN C1 ELSE C2 FI {Q}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 78 / 295

While Command Rule

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• While Rule:

` {P ∧ S} C {P}
` {P} WHILE S DO C OD {P ∧ ¬S}

P is an invariant of C whenever S holds. Since executing C preserves the truth of
P , executing C any numbner of times also preserves the truth of P .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 79 / 295

Arrays

• Let the terms A{E1 ← E 2} denote an array identical to A with the E1-th
component changed to the value E2.

• With this, the assignment command can be extended to support arrays, i.e., the
array assignment is a special case of an ordinary variable assignment.

` {P[A{E1 ← E2}/A]} A[E1] := E2 {P}

• The following axioms are needed to reason about arrays:

` A{E1 ← E2}[E1] = E2

E1 6= E2 → ` A{E1 ← E 2}[E3] = A[E3]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 80 / 295

Weakest Precondition

Definition (weakest precondition)

Given a program C and a postcondition Q, the weakest precondition wp(C ,Q) denotes
the largest set of states for which C terminates and the resulting state satisfies Q.

Definition (weakest liberal precondition)

Given a program C and a postcondition Q, the weakest liberal precondition wlp(C ,Q)
denotes the largest set of states for which C leads to a resulting state satisfying Q.

• The “weakest” precondition P means that any other valid precondition implies P .

• The definition of wp(C ,Q) is due to Dijkstra (1976) and it requires termination
while wlp(C ,Q) does not require termination.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 81 / 295

Strongest Postcondition

Definition (stronges postcondition)

Given a program C and a precondition P , the strongest postcondition sp(C ,P) has the
property that ` {P} C {sp(C ,P)} and for any Q with ` {P} C {Q}, we have
` sp(C ,P)→ Q.

• The “strongest” postcondition Q means that any other valid postcondition is
implied by Q (via postcondition weakening).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 82 / 295

Proof Automation

• Proving even simple programs takes a lot of effort

• There is a high risk to make mistakes during the process

• General idea how to automate the proof:

(i) Let the human expert provide annotations of the specification (e.g., loop invariants)
that help with the generation of proof obligations

(ii) Generate proof obligations automatically (verfication conditions)
(iii) Use automated theorem provers to verify some of the proof obligations
(iv) Let the human expert prove the remaining proof obligations (or let the human

expert provide additional annotations that help the automated theorem prover)

• Step (ii) essentially compiles an annotated program into a conventional
mathematical problem.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 83 / 295

Annotations

• Annotations are required

(i) before each command Ci (with i > 1) in a sequence C1;C2; . . . ;Cn, where Ci is not
an assignment command and

(ii) after the keyword DO in a WHILE command (loop invariant)

• The inserted annotation is expected to be true whenever the execution reaches the
point of the annotation.

• For a properly annotation program, it is possible to generate a set of proof goals
(verification conditions).

• It can be shown that once all generated verification conditions have been proved,
then ` {P} C {Q}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 84 / 295

Generation of Verification Conditions

• Assignment {P} V := E {Q}:
Add verification condition P → Q[E/V].

• Conditions {P} IF S THEN C1 ELSE C2 FI {Q}
Add verification conditions generated by {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}

• Sequences of the form {P} C1; . . . ; Cn−1; {R} Cn {Q}
Add verification conditions generated by {P} C1; . . . ; Cn−1 {R} and {R} Cn {Q}

• Sequences of the form {P} C1; . . . ; Cn−1; V := E {Q}
Add verification conditions generated by {P} C1; . . . ; Cn−1 {Q[E/V]}

• While loops {P} WHILE S DO {R} C OD {Q}
Add verification conditions P → R and R ∧ ¬S → Q
Add verificiation conditions generated by {R ∧ S} C {R}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 85 / 295

Total Correctness

• We assume that the evaluation of expressions always terminates.

• With this simplifying assumption, only WHILE commands can cause loops that
potentially do not terminate.

• All rules for the other commands can simply be extended to cover total correctness.

• The assumption that expression evaluation always terminates is often not true.
(Consider recursive functions that can go into an endless recursion.)

• We have so far also silently assumed that the evaluation of expressions always
yields a proper value, which is not the case for a division by zero.

• Relaxing our assumptions for expressions is possible but complicates matters
significantly.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 86 / 295

Rules for Total Correctness [1/4]

• Assignment axiom
` [P[E/V]] V := E [P]

• Precondition strengthening

` P → P ′, ` [P ′] C [Q]

` [P] C [Q]

• Postcondition weakening

` [P] C [Q ′], ` Q ′ → Q

` [P] C [Q]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 87 / 295

Rules for Total Correctness [2/4]

• Specification conjunction

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∧ P2] C [Q1 ∧ Q2]

• Specification disjunction

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∨ P2] C [Q1 ∨ Q2]

• Skip command rule

[P] SKIP [P]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 88 / 295

Rules for Total Correctness [3/4]

• Sequence rule

` [P] C1 [R1], ` [R1] C2 [R2], . . . , ` [Rn−1] Cn [Q]

` [P] C1; C2; . . . ; Cn [Q]

• Conditional rule
` [P ∧ S] C1 [Q], ` [P ∧ ¬S] C2 [Q]

` [P] IF S THEN C1 ELSE C2 FI [Q]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 89 / 295

Rules for Total Correctness [4/4]

• While rule

` [P ∧ S ∧ E = n] C [P ∧ (E < n)], ` P ∧ S → E ≥ 0

` [P] WHILE S DO C OD [P ∧ ¬S]

E is an integer-valued expression
n is an auxiliary variable not occuring in P , C , S , or E

• A prove has to show that a non-negative integer, called a variant, decreases on
each iteration of the loop command C .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 90 / 295

Generation of Termination Verification Conditions

• The rules for the generation of termination verificiation conditions follow directly
from the rules for the generation of partial correctness verificiation conditions,
except for the while command.

• To handle the while command, we need an additional annotation (in square
brackets) that provides the variant expression.

• For while loops of the form {P} WHILE S DO {R} [E] C OD {Q} add the
verification conditions

P → R

R ∧ ¬S → Q

R ∧ S → E ≥ 0

and add verificiation conditions generated by {R ∧ S ∧ (E = n)} C {R ∧ (E < n)}
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 91 / 295

Termination and Correctness

• Partial correctness and termination implies total correctness:

` {P} C {Q}, ` [P] C [T]

` [P] C [Q]

• Total correctness implies partial correctness and termination:

` [P] C [Q]

` {P} C {Q}, ` [P] C [T]

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 92 / 295

Part: Concurrency and Distributed Algorithms

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 93 / 295

Concurrency Overview

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 94 / 295

Actor Model (Hewitt 1973)

• An actor is a computational entity that, in response to a message it receives, can
concurrently:
• send a finite number of messages to other actors;
• create a finite number of new actors;
• designate the behavior to be used for the next message it receives.

• There is no assumed order on the actions and they could be carried out in parallel.

• Everything is an actor. An actor can only communicate with actors whose
addresses it has.

• Actors are concurrent, interaction only through direct asynchronous message
passing.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 95 / 295

Communicating Sequential Processes (Hoare 1978)

• Communicating Sequential Processes (CSP) were proposed as a foundation for a
concurrent programming language and the ideas later formalized into a calculus
belonging to the family of process calculi, mathematical formalisms for describing
and analyzing properties of concurrent computation.

• CSP is based on events and processes and a message passing idea using channels.

• CSP processes are anonymous, actors have identified names.

• CSP message-passing fundamentally involves a rendezvous between the processes
involved in sending and receiving the message.

• CSP uses explicit channels for message passing, whereas actor systems transmit
messages to named destination actors.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 96 / 295

Logical Clocks (Lamport 1978)

• Analyzing distributed systems requires to understand causality.

• It is important to know what happend before a certain event that can have
influenced the event.

• Regular time does not provide a good way to express an order of events in a
distributed system (clock synchronization issues)

• Lamport proposed logical clocks that can express the happened-before relation on
the set of events.

• Lamport express happened-before, they are insufficient to express causality or
concurrency.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 97 / 295

π Calculus (Milner 1992)

• The π-calculus belongs to the family of process calculi, mathematical formalisms
for describing and analyzing properties of concurrent computation.

• The aim of the π-calculus is to be able to describe concurrent computations whose
configuration may change during the computation

• The π-calculus is general (turing complete).

• The π-calculus has been extended with cryptographic primitives to the spi-calculus
in order to analyze cryptographic protocols.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 98 / 295

Model of Distributed Algorithms

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 99 / 295

Transition System

Definition (transition system)

A transition system is a triple S = (C,→, I) where C is a set of configurations, → is a
binary transition relation on C, and I is a subset of C of initial configurations.

Definition (execution)

Let S = (C,→, I) be a transition system. An execution of S is a maximal sequence
E = (γ0, γ1, . . .), where γ0 ∈ I and γi → γi+1 for all i ≥ 0.

• A transition relation is a subset of C × C.

• The notation γ → δ is used for (γ, δ) ∈→.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 100 / 295

Transition System

Definition (reachability)

Configuration δ is reachable from γ, notation γ ; δ, if there exists a sequence
γ = γ0, γ1, . . . , γk = δ with γi → γi+1 for all 0 ≤ i < k .

• A terminal configuration is a configuration γ for which there is no δ such that
γ → δ

• A sequence E (γ0, γ1, . . .) with γi → γi+1 for all i is maximal if it is either infinite or
ends in a terminal configuration

• Configuration δ is said to be reachable if it is reachable from an initial
configuration.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 101 / 295

Local Algorithm

Definition (local algorithm)

The local algorithm of a process is a quintuple (Z , I ,`i ,`s ,`r), where Z is a set of
states, I is a subset of Z of initial states, `i is a relation on Z × Z , and `s and `r are
relations on Z ×M× Z . The binary relation ` on Z is defined by

c ` d ⇐⇒ (c , d) ∈`i ∨∃m ∈M : (c ,m, d) ∈ (`s ∪ `r).

• Let M be a set of possible messages. We denote the collection of multisets with
elements from M with M(M).

• The relations `i , `s , and `r correspond to state transitions related with internal,
send, and receive events.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 102 / 295

Distributed Algorithm

Definition (distributed algorithm)

A distributed algorithm for a collection P = {p1, . . . , pN} of processes is a collection of
local algorithms, one for each process in P.

• A configuration of a transition system consists of the state of each process and the
collection of messages in transit

• The transitions are the events of the processes, which do not only affect the state
of the process, but can also affect (and be affected by) the collection of messages

• The initial configurations are the configurations where each process is in an initial
state and the message collection is empty

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 103 / 295

Induced Async. Transition System

Definition (Induced Async. Transition System)

The transition system S = (C,→, I) is induced under asynchronous communication by
a distributed algorithm for processes p1, . . . , pN , where the local algorithm for process pi

is (Zpi , Ipi ,`ipi ,`
s
pi
,`rpi), is given by

(1) C = {(cp1 , . . . , cpN ,M) : (∀p ∈ P : cp ∈ Zp) ∧M ∈M(M)}
(2) → (see next slide)

(3) I = {(cp1 , . . . , cpN ,M) : (∀p ∈ P : cp ∈ Ip) ∧M = ∅}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 104 / 295

Induced Async. Transition System

Definition (Induced Async. Transition System (cont.))

(2) →= (
⋃

p∈P →p), where the →p are the transitions corresponding to the state
changes of process p; →pi is the set of pairs

(cp1 , . . . , cpi , . . . , cpN ,M1), (cp1 , . . . , c
′
pi
, . . . , cpN ,M2)

for which one of the following three conditions holds:
• (cpi , c

′
pi

) ∈`ipi and M1 = M2

• for some m ∈M, (cpi ,m, c ′pi) ∈`
s
pi

and M2 = M1 ∪ {m}
• for some m ∈M, (cpi ,m, c ′pi) ∈`

r
pi

and M1 = M2 ∪ {m}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 105 / 295

Induced Sync. Transition System

Definition (Induced Sync. Transition System)

The transition system S = (C,→, I) is induced under synchronous communication by a
distributed algorithm for processes p1, . . . , pN , where the local algorithm for process pi

is (Zpi , Ipi ,`ipi ,`
s
pi
,`rpi), is given by

(1) C = {(cp1 , . . . , cpN) : (∀p ∈ P : cp ∈ Zp)}
(2) → (see next slide)

(3) I = {(cp1 , . . . , cpN) : (∀p ∈ P : cp ∈ Ip)}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 106 / 295

Induced Sync. Transition System

Definition (Induced Sync. Transition System (cont.))

(2) →= (
⋃

p∈P →p) ∪ (
⋃

p,q∈P:p 6=q →pq), where
• →pi is the set of pairs

(cp1 , . . . , cpi , . . . , cpN), (cp1 , . . . , c
′
pi
, . . . , cpN)

for which (cpi , c
′
pi

) ∈`ipi
• →pipj is the set of pairs

(. . . , cpi , . . . , cpj , . . .)(. . . , c ′pi , . . . , c
′
pj
, . . .)

for which there is a message m ∈ M such that

(cpi ,m, c ′pi) ∈`
s
pi

and (cpj ,m, c ′pj) ∈`
r
pj

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 107 / 295

Events, Causality, Logical Clocks

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 108 / 295

Events and Causal Order

• A transition a is said to occur earlier than transition b if a occures in the sequence
of transitions before b

• An execution E = (γ0, γ1, . . .) can be associated with a sequence of events
Ē = (e0, e1, . . .), where ei is the event by which the configuration changes from γi
to γi+1

• Events of a distributed execution can sometimes be interchanged without affecting
the later configurations of the execution

• The notion of time as a total order on the events is not suitable and instead the
notion of causal dependence is introduced

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 109 / 295

Dependence of Events

Theorem
Let γ be a configuration of a distributed system (with asynchronous message passing)
and let ep and eq be events of different processes p and q, both applicable in γ. Then
ep is applicable in eq(γ), eq is applicable in ep(γ), and ep(eq(γ)) = eq(ep(γ)).

• Let ep and eq be two events that occur consecutively in an execution. The premise
of the theorem applies to these events except in the following two cases:

a) p = q or
b) ep is a send event, and eq is the corresponding receive event

• The fact that a particular pair of events cannot be exchanged is expressed by
saying that there is a causal relation between these two events

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 110 / 295

Causal Order

Definition (causal order)

Let E be an execution. The relation ≺, called the causal order, on the events of the
execution is the smallest relation that satisfies the following requirements:

(1) If e and f are different events of the same process and e occurs before f , then
e ≺ f .

(2) If s is a send event and r the corresponding receive event, then s ≺ r .

(3) ≺ is transitive.

• Let a � b denote (a ≺ b ∨ a = b); the relation � is a partial order

• There may be events a and b for which neither a ≺ b nor b ≺ a holds; such events
are said to be concurrent, notation a | b

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 111 / 295

Computations

• The events of an execution can be reordered in any order consistent with the causal
order, without affecting the result of the execution

• Such a reordering of the events gives rise to a different sequence of configurations,
but this execution will be regarded as equivalent to the original execution

• Let E = (γ0, γ1, . . .) be an execution with an associated sequence of events
Ē = (e0, e1, . . .), and assume f is a permutation of Ē

• The permutation (f0, f1, . . .) of the events of E is consistent with the causal order if
fi � fj implies i ≤ j , i.e., if no event is preceded in the sequence by an event it
causally precedes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 112 / 295

Equivalent Executions

Theorem
Let f = (f0, f1, . . .) be a permutation of the events of E that is consistent with the
causal order of E . Then f defines a unique execution F starting in the initial
configuration of E . F has as many events as E , and if E is finite, the last configuration
of F is the same as the last configuration of E .

• If the conditions of this theorem apply, we say that E and F are equivalent
executions, denoted as E ∼ F

• A global observer, who has access to the actual sequence of events, may distinguish
between two equivalent executions

• The processes, however, cannot distinguish between two equivalent executions

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 113 / 295

Computation

Definition (computation)

A computation of a distributed algorithm is an equivalence class under ∼ of executions
of the algorithm.

• It makes no sense to speak about the configurations of a computation, because
different executions of the computation may not have the same configurations

• It does make sense to speak about the collection of events of a computation,
because all executions of the computation consist of the same set of events

• The causal order of the events is defined for a computation

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 114 / 295

Logical Clocks

Definition (clock)

A clock is a function Θ from the set of events Ē to an ordered set (X , <) such that for
a, b ∈ Ē

a ≺ b ⇒ Θ(a) < Θ(b).

Definition (lamport clock)

A Lamport clock is a clock function ΘL which assigns to every event a the length k of
the longest sequence (e1, . . . , ek) of events satisfying e1 ≺ e2 ≺ . . . ≺ ek = a.

• A clock function Θ expresses causal order, but does not necessarily express
concurrency

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 115 / 295

Lamport Clocks

• The value of ΘL can be computed as follows:
• ΘL(a) is 0 if a is the first event in a process
• If a is an internal event or send event, and a′ the previous event in the same

process, then
ΘL(a) = ΘL(a′) + 1

• If a is a receive event, a′ the previous event in the same process, and b the send
event corresponding to a, then

ΘL(a) = max(ΘL(a′),ΘL(b)) + 1

• The per process clock value may be combined with a process identifier to obtain a
globally unique value

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 116 / 295

Lamport Clock Example

e1,1 e1,2 e1,4e1,3 e1,5

e2,1 e2,3e2,2

e3,1 e3,2 e3,3 e3,5 e3,6e3,4

P1:

P2:

P3:

2 5 6 7

1 2

1

1 3 4 5 6 7

7

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 117 / 295

Vector Clocks

Definition (vector clocks)

A vector clock for a set of N processes is a clock function ΘV which is defined by
ΘV (a) = (a1, . . . , aN), where ai is the number of events e in process pi for which e ≺ a.

• Vectors are naturally ordered by the vector order:

(a1, . . . an) ≤V (b1, . . . bn)⇐⇒ ∀i (1 ≤ i ≤ b) : ai ≤ bi

• Vector clocks can express concurrency since concurrent events are labelled with
incomparable clock values:

a ≺ b ⇐⇒ ΘV (a) < ΘV (b)

• Vector clocks require more space in the messages, but element compression can
reduce message overhead

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 118 / 295

Vector Clock Example

e1,1 e1,2 e1,4e1,3 e1,5

e2,1 e2,3e2,2

e3,1 e3,2 e3,3 e3,5 e3,6e3,4

P1:

P2:

P3:

(2,0,0) (3,2,3) (4,2,3) (5,2,3)

(0,1,0) (0,2,0)

(1,0,0)

(0,0,1) (0,2,4) (0,2,5) (0,2,6)

(4,3,3)

(0,2,3)(0,2,2)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 119 / 295

Stable Properties and Snapshots

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 120 / 295

Properties of Computations

• It is often required to analyze certain properties of a computation.

• An important class of properties are so called stable properties. A property P of
configurations is stable if

P(γ) ∧ γ ; δ ⇒ P(δ).

• If a computation ever reaches a configuration γ for which P holds true, P remains
true in every configuration δ from then on.

• Examples of stable properties: termination, deadlock, loss of tokens, non-reachable
objects in dynamic memory structures, . . .

• Stable properties can be analyzed off-line by taking a snapshot of a computation.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 121 / 295

Snapshots Preliminaries

• Let C be a computation of a distributed system consisting of a set of P processes.
The set of events of the computation C is denoted Ev .

• The local computation of process p consists of a sequence c
(0)
p , c

(1)
p , . . . of process

states, where c
(0)
p is an initial state of process p.

• The transition from state c
(i−1)
p to c

(i)
p is marked by the occurrence of an event e

(i)
p .

• It follows that Ev =
⋃

p∈P{e
(1)
p , e

(2)
p , . . .}.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 122 / 295

Snapshot Approach (1/2)

• Goal: construct a system configuration composed from local states (snapshot
states).

• The local state c∗p of a process p is called its local snapshot state.

• If the snapshot state is c
(i)
p , i.e., p takes its snapshot between e

(i)
p and e

(i+1)
p , the

events e
(j)
p with j ≤ i are called preshot events of p and the event with j > i are

called postshot events of p

• A (global) snapshot consists of a snapshot state c∗p for each process p; we write
S∗ = (c∗p1 , . . . , c

∗
pN

)

• In time diagrams, local snapshots are depicted by open circles.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 123 / 295

Snapshot Approach (2/2)

• If a channel from p to q exists, then the state c
(i)
p of p includes a list sent

(i)
pq of all

messages that p has sent to q in the events e
(1)
p through e

(i)
p .

• The state c
(i)
q of q includes a list rcvd

(i)
pq of all messages that q has received from p

in the events e
(1)
p through e

(i)
p .

• The state of channel pq is defined to be the set of messages sent by p (according
to c∗p) but not received by q (according to c∗q); that is sent∗pq \ rcvd∗pq.

• The simplification ensures that the channel state is recorded in the local snapshots.
Note that this assumption can be lifted later on to avoid the storage of all
messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 124 / 295

Anomalies

7

e1,1 e1,2 e1,4e1,3 e1,5

e2,1 e2,3e2,2

e3,1 e3,2 e3,3 e3,5 e3,6e3,4

P1:

P2:

P3:

2 5 6 7

1 2

1

1 3 4 5 6 7

• Anomalies exist if rcvd∗pq is not a subset of sent∗pq
• Anomalies occur if a post-shot message in the snapshot of one process is a pre-shot

message in the snapshot of another process.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 125 / 295

Feasibile Snapshot and Cuts

Definition (feasible snapshot)

Snapshot S∗ is feasible if for each two (neighbor) processes p and q, rcvd∗pq ⊆ sent∗pq.

Definition (cut)

A cut of Ev is a set L ⊆ Ev such that

e ∈ L ∧ e ′ ≺p e ⇒ e ′ ∈ L.

Cut L2 is said to be later than L1 if L1 ⊆ L2.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 126 / 295

Consistent Cuts and Meaningful Snapshot

Definition (consistent cut)

A consistent cut of Ev is a set L ⊆ Ev such that

e ∈ L ∧ e ′ ≺ e ⇒ e ′ ∈ L.

Definition
Snapshot S∗ is meaningful in computation C if there exists an execution E ∈ C such
that S∗ is a configuration of E .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 127 / 295

Feasible vs. Meaningful Snapshots vs. Consistent Cuts

Theorem
Let S∗ be a snapshot and L the cut implied by S∗. The following statements are
equivalent.

(1) S∗ is feasible.

(2) L is a consistent cut.

(3) S∗ is meaningful.

• The proof shows that (1) implies (2), (2) implies (3), and (3) implies (1). See
Gerard Tel [?] for the details.

• Note that feasibility is a local property between neighbors, while meaningfulness is
a global property of the snapshot.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 128 / 295

Chandy-Lamport Algorithm

1: procedure initiate
2: if ¬takenp then
3: record local state()
4: takenp ← true
5: for ∀q ∈ Neighp do
6: send(q,marker)
7: end for
8: end if
9: end procedure

1: procedure marker-arrived
2: recv(q,marker)
3: if ¬takenp then
4: record local state()
5: takenp ← true
6: for ∀q ∈ Neighp do
7: send(q,marker)
8: end for
9: end if

10: end procedure

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 129 / 295

Chandy-Lamport Properties

• The channels are assumed to be first in – first out (FIFO), i.e., they do not reorder
messages.

• Processes inform each other about snapshot construction by sending special marker
messages.

• The algorithm must be initiated by at least one process, but it works correctly if
initiated by an arbitrary non-empty set of processes.

• The algorithm of Chandy-Lamport computes a meaningful snapshot within finite
time after its initialization by at least one process.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 130 / 295

Construction of the Channel State

Lemma
In a feasible snapshot, send∗pq \ rcvd∗pq equals the set of messages sent by p in a preshot
event and received by q in a postshot event if the channels have FIFO property.

• Chandy-Lamport Algorithm:
• All preshot messages from p to q are received before the marker message sent from
p to q.

• Moreover, only preshot messages are received before the marker.
• The state of the channel pq is the collection of messages received by q after

recording its state but before the receipt of p’s marker message.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 131 / 295

Chandy-Lamport Snapshot Example

messages r to q

q:

p:

r:

messages q to p

messages r to p

messages q to r

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 132 / 295

Stable Property Detection Algorithm

1: procedure stable-property-detection(P)
2: repeat
3: γ ← take global snapshot()
4: detected ← P(γ)
5: if ¬detected then
6: suspend some time()
7: end if
8: until detected
9: end procedure

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 133 / 295

Fault Tolerance and Broadcasts

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 134 / 295

Fault Models

• Initially dead: The fault that causes a component to not participate during the
lifetime of the system.

• Crash fault: The fault causes the component to halt or to lose its internal state.

• Omission fault: A fault that causes a component to not respond to some input.

• Timing fault: A fault that causes a component to respond either too early or too
late.

• Byzantine fault: An arbitrary fault which causes the component to behave in a
totally arbitrary manner during failure.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 135 / 295

Hierarchy of Fault Models

initially dead

byzantine faults

omission faults

crash faults

=⇒ Incorrect computation faults are a subset of Byzantine faults where a component
does not have any timing fault, but simply produces an incorrect output in
response to the given input.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 136 / 295

Benign vs. Malign Failures

• Initially dead processes and crashes are called benign failure types.

• Byzantine failures which are not benign failures are called malign failure types.

• For several distributed problems, it turns out that a collection of N processes can
tolerate < N

2
benign failures.

• For several distributed problems in an asynchronous system, it turns out that a
collection of N processes can tolerate < N

3
malign failures.

• For several distributed problems in a synchronous system, a higher level of
robustness can be achieved, especially if messages can be signed.

=⇒ Note that synchronous systems allow for timing errors which do not exist in
asynchronous systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 137 / 295

Approaches to Fault-Tolerance

• Robust Algorithms
• Correct processes should continue behaving correctly in spite of failures
• Tolerate failures by using replication and voting
• Never wait for all processes because processes can fail

• Stabilizing Algorithms (sometimes Self-stabilizing Algorithms)
• Correct processes might be affected by failures, but will eventually become correct
• The system can start in any state (possibly faulty), but should eventually resume

correct behavior

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 138 / 295

Robust Decision Algorithms

• Robust algorithms typically try to solve some decision problem where each correct
process irreversibly decides.

• Three requirements on decision problems:
• Termination: All correct processes eventually decide
• Consistency: Constraint on different processes decisions:

Consensus problem: every decide should be equal
Election: Every decide except one should be the same

• Non-triviality: Fixed trivial outputs (e.g., always decide “yes”) are excluded;
processes should need to communicate to be able to solve the problem

• Application: All processes in a distributed databases must agree whether to commit
or abort a transaction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 139 / 295

Reliable Broadcasts

• Reliable Broadcast:
• All correct processes deliver the same set of messages
• The set only contains messages from correct processes

• Atomic Broadcast (reliable)
• A reliable broadcast where it is guaranteed that every process receives its messages

in the same order as all the other processes

• Given a reliable atomic broadcast, we can implement a consensus algorithm
• Let every node broadcast either 0 or 1
• Decide on the first number that is received
• Since every correct process will receive the messages in the same order, they will all

decide on the same value

• Solving Reliable Atomic Broadcast is equivalent to solving consensus

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 140 / 295

Broadcast System Model

P1

layer

transport

layer

receive()

deliver()

Pn

send()

broadcast()

communication network

Pi

receive()

deliver()

multicast

• Important distinction between send() / receive() and broadcast() /
deliver() primitives

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 141 / 295

Reliable Broadcast

Definition
A reliable broadcast is a broadcast which satisfies the following three properties:

1. Validity : If a correct process broadcasts a message m, then all correct processes
eventually deliver m.

2. Agreement: If a correct process delivers a message m, then all correct processes
eventually deliver m.

3. Integrity : For any message m, every correct process delivers m at most once and
only if m was previously broadcast by the sender of m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 142 / 295

FIFO Broadcast

Example

x := x+1x := 2x

P3

P2

P1

x=3

x=3

x=3 x=6

x=6 x=7

x=7

x=4 x=8

Definition
A broadcast is called a FIFO broadcast if the following condition holds: If a process
broadcasts a message m before it broadcasts a message m′, then no correct process
delivers m′ unless it has previously delivered m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 143 / 295

Causal Broadcast

Example

x := x+1

x := 2x

x=3

x=3

x=3 x=4

x=4 x=8

x=8

x=6 x=7

P3

P2

P1

Definition
A broadcast is called a causal broadcast if the following condition holds: If a broadcast
of a message m causally precedes the broadcast of a message m′, then no correct
process delivers m′ unless it has previously delivered m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 144 / 295

Atomic Broadcast

Example

x := x+1

x := 2x

P4

P3

P2

P1

x=3

x=3

x=3 x=6 x=7

x=3

x=4 x=8

x=8x=4

x=7x=6

Definition
A broadcast is called an atomic or totally ordered broadcast if the following condition
holds: If correct processes p and q both deliver message m and m′, then p delivers m
before m′ if and only if q delivers m before m′.
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 145 / 295

Broadcast Variants

Causal Order

Reliable

Broadcast Broadcast

Atomic

Broadcast

FIFO

Broadcast

FIFO Atomic

Causal AtomicCausal

Broadcast Broadcast

Total Order

Total Order

Total Order

FIFO OrderFIFO Order

Causal Order

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 146 / 295

Communicating Sequential Processes

12 Concurrency Overview

13 Model of Distributed Algorithms

14 Events, Causality, Logical Clocks

15 Stable Properties and Snapshots

16 Fault Tolerance and Broadcasts

17 Communicating Sequential Processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 147 / 295

CSP Notation: Events, Processes, Alphabet, Prefix

• Events are denoted by lower-case words (coin) or letters a, b, c . . .

• Processes are denoted by upper-case words (VMS) or letters P , Q, R , . . .

• Variables denoting events use lower-case letters x , y , z

• Variables denoting processes use upper-case letters X , Y , Z

• Sets of events are denoted by upper-case letters A, B , C

• The alphabet αP of a process P is the set of events it can react on.

• The process STOP is a process that does nothing, it never engages in any events.

• The process RUN is a process that engages in any event of its alphabet.

• Let x be an event and let P be a process. Then (x → P) describes a process which
first engages in the event x and then behaves as described by P . We adopt the
convention that the prefix x → P is right associative.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 148 / 295

Recursion and Choice

• A process description beginning with a prefix is said to be guarded.
• If F (X) is a guarded expression containing the process name X and A is the

alphabet of X , then the equation

X = F (X)

has a unique solution with the alphabet A. The solution of the expression is
denoted as follows:

µX : A • F (X)

• If x and y are distinct events, then

(x → P | y → Q)

describes a process which initially engages in either of the events x or y and then
behaves as either P (if the first event was x) or Q (if the first event was y).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 149 / 295

Basic Laws

STOP 6= (d → P) (L1A)

(c → P) 6= (d → Q) if c 6= d (L1B)

(c → P | d → Q) = (d → Q | c → P) (L1C)

(c → P) = (c → Q) ≡ P = Q (L1D)

(Y = F (Y)) ≡ (Y = µX • F (X)) if F (X) is a guarded expression (L2)

µX • F (X) = F (µX • F (X)) (L2A)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 150 / 295

Traces

• A trace of a process is a finite sequence of symbols recording the events a process
has engaged in up to some moment in time.

• A trace is denoted as a sequence of symbols, separated by commas and enclosed in
angular brackets.

• The empty trace 〈〉 is the shortest trace of every possible process.

• Variables denoting traces are s, t, u

• Variables denoting sets of traces S ,T ,U

• Functions are denoted by f , g , h

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 151 / 295

Trace Catenation

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 152 / 295

Trace Restriction

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 153 / 295

Trace Head and Tail

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 154 / 295

Trace Star

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 155 / 295

Trace Ordering

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 156 / 295

Trace Length

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 157 / 295

Traces of a Process

• The functions traces(P) returns the complete set of all possible traces of process P .

• If s ∈ traces(P), then P/s (P after s) is a process which behaves as P from the
time after P has engaged in all the actions recorded in the trace s.

〈〉 ∈ traces(P) (L6)

s · t ∈ traces(P) =⇒ s ∈ traces(P) (L7)

traces(P) ⊆ (αP)∗ (L8)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 158 / 295

Laws of Traces of a Process

traces(STOP) = {〈〉} (L1)

traces(c → P) = {〈〉} ∪ {〈c〉 · t | t ∈ traces(P)} (L2)

traces(c → P | d → Q) = {〈〉} ∪ {〈c〉 · t | t ∈ traces(P)} ∪ {〈d〉 · t | t ∈ traces(Q)}
(L3)

traces(x : B → P(X)) = {〈〉}
⋃
b∈B

{〈b〉 · t | t ∈ traces(P(b))} (L4)

traces(µX : A • F (X)) =
⋃
n≥0

traces(F n(STOP)) (L5)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 159 / 295

Laws of Traces of a Process

P/〈〉 = P (L1)

P/(s · t) = (P/s)/t (L2)

(x : B → P(x))/〈c〉 = P(c) if c ∈ B) (L3)

(c → P)/〈c〉 = P (L3A)

traces(P/s) = {t | s · t ∈ traces(P)} if s ∈ traces(P) (L4)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 160 / 295

Specification, Satisfaction, Proof

• Let tr to denote an arbitrary trace of a process.

• A specification is a predicate containing free variables over tr .

• If a process P satisfies specification S , we write P sat S .

• The goal is use our laws to proof P sat S .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 161 / 295

Satisfaction and Proof Laws

TBD

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 162 / 295

Interaction of Processes

• Two processes P and Q with the same alphabet (αP = αQ) interact in a lock-step
way, denoted as P ‖ Q.

• Interaction means that both processes follow the same set of events.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 163 / 295

Interaction Laws

P ‖ Q = Q ‖ P (L1)

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R (L2)

P ‖ STOP = STOP (L3A)

P ‖ RUN = P (L3B)

(c → P) ‖ (c → Q) = (c → (P ‖ Q)) (L4A)

(c → P) ‖ (d → Q) = STOP if c 6= d (L4B)

(x : A→ P(x)) ‖ (y : B → Q(y)) = (z : (A ∩ B)→ (P(z) ‖ Q(z))) (L4)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 164 / 295

Concurrency of Processes

• Two processes P and Q with different alphabets (αP 6= αQ) can execute
concurrently, denoted as P ‖ Q.

• Events that are both in αP and αQ require simultaneous execution by P and Q.

• Events in αP that are not in αQ are of no concern for Q, and events in αQ that
are not in αP are of no concern for P .

• The set of events that is possible for the concurrent combination of P and Q is
given by

α(P ‖ Q) = αP ∪ αQ

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 165 / 295

Concurrency Laws

Let a ∈ (αP \ αQ), b ∈ (αQ \ αP), {c , d} ⊆ (αP ∩ αQ):

P ‖ Q = Q ‖ P (L1)

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R (L2)

P ‖ STOP = STOP (L3A)

P ‖ RUN = P (L3B)

(c → P) ‖ (c → Q) = (c → (P ‖ Q)) (L4A)

(c → P) ‖ (d → Q) = STOP if c 6= d (L4B)

(a→ P) ‖ (c → Q) = a→ (P ‖ (c → Q)) (L5A)

(c → P) ‖ (b → Q) = b → ((c → P) ‖ Q) (L5B)

(a→ P) ‖ (b → Q) = (a→ (P ‖ (b → Q)) | b → ((a→ P) ‖ Q)) (L6)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 166 / 295

Change of Symbols

• Sometimes it is convenient to change the symbols of a process or to derive another
identical independent process by changing symbols.

• Let f be an injective function f : αP 7→ A. We define the process f (P) which
engaged in the event f (c) whenever P would engage in c :

αf (P) = f (αP)

traces(f (P)) = {f ∗(s) | s ∈ traces(P)}

• f ∗ : A 7→ B is derived from f : A 7→ B and it maps a sequence of symbols in A∗ to
a sequence in B∗ by applying f to each element of the sequence.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 167 / 295

Labeled Processes

• Changing symbols allows us to create collections of similar processes which operate
concurrently.

• We can use the technique to create labeled processes. A process P labeled by l is
denoted by l : P . It engages in l .x whenever P would engage in x .

• The function defining l : P is fl(x) = l .x for all x ∈ αP .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 168 / 295

Change of Symbols Laws

We will use f (B) = {f (x) | x ∈ B}, f −1 denotes the inverse of f , f ◦ g is the
composition of f and g , f ∗ as defined above.

f (STOP) = STOP (L1)

f (x : B → P(x)) = (y : f (B)→ f (P(f −1(y)))) (L2)

f (P ‖ Q) = f (P) ‖ f (Q) (L3)

f (µX : •F (X)) = (µY : f (A) • f (F (f −1(Y)))) (L4)

f (g(P)) = (f ◦ g)P (L5)

traces(f (P)) = {f ∗(s) | s ∈ traces(P)} (L6)

f (P)/f ∗(s) = f (P/s) (L7)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 169 / 295

Non-deterministic Choice

• If P and Q are processes with the same alphabet (αP = αQ), then the notation

P u Q

denotes a process which behaves either like P or like Q.

• By construction, we have α(P u Q) = αP = αQ.

• The decision whether the process P u Q behaves like P or Q in made arbitrarily
without knowledge or control by the environment.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 170 / 295

Non-deterministic Choice Laws

P u P = P (L1)

P u Q = Q u P (L2)

P u (Q u R) = (P u Q) u R (L3)

x → (P u Q) = (x → P) u (x → Q) (L4)

(x : B → (P(x) u Q(x))) = (x : B → P(x)) u (x : B → Q(x)) (L5)

P ‖ (Q u R) = (P ‖ Q) u (P ‖ R) (L6)

(P u Q) ‖ R = (P ‖ R) u (Q ‖ R) (L7)

f (P u Q) = f (P) u f (Q) (L8)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 171 / 295

General Choice

• If P and Q are processes with the same alphabet (αP = αQ), then the notation

P �Q

denotes a process which behaves either like P or like Q.

• By construction, we have α(P �Q) = αP = αQ.

• The decision whether the process P �Q behaves like P or Q can be made by the
environment. If the first action is only available for P , then P will be executed. If
the first action is only available in Q, then Q will be executed. If the first action is
possible in both P and Q, then the choice becomes non-deterministic.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 172 / 295

General Choice Laws

P �P = P (L1)

P �Q = Q �P (L2)

P � (Q �R) = (P �Q)�R (L3)

P � STOP = P (L4)

(x : A→ P(x))� (y : B → Q(y)) =

(z : (A ∪ B)→ P(z)) z ∈ (A \ B)

(z : (A ∪ B)→ Q(z)) z ∈ (B \ A)

(z : (A ∪ B)→ (P(z) u Q(z))) z ∈ (A ∩ B)

(L5)

P � (Q u R) = (P �Q) u (P �R) (L6)

P u (Q �R) = (P u Q)� (P u R) (L7)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 173 / 295

Refusals

• Let X be a set of events which are offered initially by the environment of P . If P
can deadlock on its first step when placed in this environment, then X is a refusal
of P . The set of all such refusals of P is denoted refusals(P).

• If P is deterministic, then

(X ∈ refusals(P)) ≡ (X ∩ P0 = {})

where P0 = {x | 〈x〉 ∈ traces(P)}.
• This can be generalized since the condition also applies to other steps of P . P is

deterministic if

∀s : traces(P) • (X ∈ refusals(P/s) ≡ (X ∩ (P/s)0 = {})

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 174 / 295

Refusals Laws

refusals(STOP) = all subsets of the alphabet (L1)

refusals(c → P) = {X | X ⊆ (αP \ {c})} (L2)

refusals(x : B → P(x)) = {X | X ⊆ (αP \ B)} (L3)

refusals(P u Q) = refusals(P) ∪ refusals(Q) (L4)

refusals(P �Q) = refusals(P) ∩ refusals(Q) (L5)

refusals(P ‖ Q)− {X ∪ Y | X ∈ refusals(P) ∧ Y ∈ refusals(Q)} (L6)

refusals(f (P)) = {f (X) | X ∈ refusals(P)} (L7)

X ∈ refusals(P) =⇒ X ⊆ αP (L8)

{} ∈ refusals(P) (L9)

(X ∪ Y) ∈ refusals(P) =⇒ X ∈ refusals(P) (L10)

X ∈ refusals(P) =⇒ (X ∪ {x}) ∈ refusals(P) ∨ 〈x〉 ∈ traces(P) (L11)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 175 / 295

Concealment

• After constructing processes, we may want to conceal some internal events that
were useful for the construction but which are irrelevant for the environment.

• If C is a finite set of events, then P \ C is a process that behaves like P , except
that each occurrence of any event in C is concealed.

• Obviously, we want α(P \ C) = (αP) \ C .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 176 / 295

Interleaving

• If P and Q are processes with the same alphabet (αP = αQ), then the notation

P |||Q

denotes concurrent execution of P and Q where common events are not processed
simultaneously. Each action of the system is an action of exactly one of the
processes.

• If one of the processes cannot engage in the action, then it must have been the
other one.

• If both processes could have engaged in the same action, then the choice between
them is non-deterministic.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 177 / 295

Communication

• A communication event is described by a pair c .v where c is the name of the
channel on which the communication takes place and v is the value of the message
which passes.

• The set of all messages which a process P can communicate on channel c is
defined by:

αc(P) = {v | c .v ∈ αP}
• The functions channel(c .v) = c and message(c .v) = v provide us with the channel

c and the message v of the communication event c .v .
• A process which writes v to c and then behaves list P is denoted as:

(c!v → P) = (c .v → P)

• A process which receives x on c and then behaves like P(x) is denoted as:

(c?x → P(x) = (y : {y : channel(y) = c} → P(message(y)))

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 178 / 295

Communication Choice

• Processes may need to communicate with a subset of a set of channels. To support
this, the choice notation is adapted to channel names.

• If c and d are distinct channel names, then

(c?x → P(x) | d?y → Q(y))

denotes a process which initially inputs x on c and then behaves like P(x) or
initially inputs y on d and then behaves like Q(y).

• The choice is determined by the channel that is ready first.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 179 / 295

Communication Laws

(c!v → P) ‖ (c?x → Q(x)) = c!v → (P ‖ Q(v)) (L1)

((c!v → P) ‖ (c?x → Q(x))) \ C = (P ‖ Q(v)) \ C with (L2)

C = {c .v | v ∈ αc}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 180 / 295

Chaining (Pipes)

• Consider processes that have an input channel left and an output channel right and
no other channels.

• Two such processes P and Q can be chained together so that the right channel of
P is the left channel of Q and that the communication over the joint internal
channel is concealed.

• The result of such a construction is denoted as P � Q.

• Chaining requires that certain constraints on the alphabet are met:

α(P � Q) = αleft(P) ∪ αright(Q)

αright(P) = αleft(Q)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 181 / 295

Chaining Laws

P � (Q � R) = (P � Q)� R (L1)

(right!v → P)� (left?y → Q(y)) = P � Q(v) (L2)

(right!v → P)� (right!w → Q) = right!w → ((right!v → P)� Q) (L3)

(left?x → P(x)� (left?y → Q(y)) = left?x → (P(x)� (left?y → Q(y))) (L4)

(left?x → P(x))� right!w → Q) = (left?x → (P(x)� (right!w → Q)

| right!w → ((left?x → P(x))� Q)) (L5)

(left?x → P(x))� R � right!w → Q) = (left?x → (P(x)� R � (right!w → Q)

| right!w → ((left?x → P(x))� R � Q)) (L6)

R � (right!w → Q) = right!w → (R � Q) (L7)

(left?x → P(x))� R = left?x → (P(x)� R) (L8)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 182 / 295

Part: Cryptography

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 183 / 295

Cryptography Primer

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 184 / 295

Try to read the following text. . .

Jrypbzr gb Frpher naq Qrcraqnoyr Flfgrzf!

W!eslmceotmsey St oe lSbeacdunreep eaDn d

J!rfyzprbgzfrl Fg br yFornpqhaerrc rnQa q

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 185 / 295

Terminology (Cryptography)

• Cryptology subsumes cryptography and cryptanalysis:
• Cryptography is the art of secret writing.
• Cryptanalysis is the art of breaking ciphers.

• Encryption is the process of converting plaintext into an unreadable form, termed
ciphertext.

• Decryption is the reverse process, recovering the plaintext back from the ciphertext.

• A cipher is an algorithm for encryption and decryption.

• A key is some secret piece of information used as a parameter of a cipher and
customizes the algorithm used to produce ciphertext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 186 / 295

Cryptosystem

Definition (cryptosystem)

A cryptosystem is a quintuple (M ,C ,K ,Ek ,Dk), where

• M is a cleartext space,

• C is a chiffretext space,

• K is a key space,

• Ek : M → C is an encryption transformation with k ∈ K , and

• Dk : C → M is a decryption transformation with k ∈ K .

For a given k and all m ∈ M , the following holds:

Dk(Ek(m)) = m

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 187 / 295

Cryptosystem Requirements

• The transformations Ek and Dk must be efficient to compute.

• It must be easy to find a key k ∈ K and the functions Ek and Dk .

• The security of the system rests on the secrecy of the key and not on the secrecy of
the transformations (algorithms).

• For a given c ∈ C , it is difficult to systematically compute
• Dk even if m ∈ M with Ek(m) = c is known
• a cleartext m ∈ M such that Ek(m) = c .

• For a given c ∈ C , it is difficult to systematically determine
• Ek even if m ∈ M with Ek(m) = c is known
• c ′ ∈ C with c ′ 6= c such that Dk(c ′) is a valid cleartext in M.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 188 / 295

Symmetric vs. Asymmetric Cryptosystems

Symmetric Cryptosystems
• Both (all) parties share the same key and the key needs to be kept secret.

• Examples: AES, DES (outdated), Twofish, Serpent, IDEA, . . .

Asymmetric Cryptosystems
• Each party has a pair of keys: one key is public and used for encryption while the

other key is private and used for decryption.

• Examples: RSA, DSA, ElGamal, ECC, . . .

• For asymmetric cryptosystems, a key is a key pair (k , k−1) where k denotes the
public key and k−1 the associated private key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 189 / 295

Cryptographic Hash Functions

Definition (cryptographic hash function)

A cryptographic hash function H is a hash function that meets the following
requirements:

1. The hash function H is efficient to compute for arbitrary input m.

2. Given a hash value h, it should be difficult to find an input m such that h = H(m)
(preimage resistance).

3. Given an input m, it should be difficult to find another input m′ 6= m such that
H(m) = H(m′) (2nd-preimage resistance).

4. It should be difficult to find two different inputs m and m′ such that
H(m) = H(m′) (collision resistance).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 190 / 295

Digital Signatures

• Digital signatures are used to prove the authenticity of a message (or document)
and its integrity.
• The receiver can verify the claimed identity of the sender.
• The sender can not deny that it did sent the message.
• The receiver can not tamper with the message itself.

• Digitally signing a message (or document) means that
• the sender puts a signature into a message (or document) that can be verified and
• that we can be sure that the signature cannot be faked (e.g., copied from some

other message)

• Digital signatures are often implemented by signing a cryptographic hash of the
original message (or document) since this is usually less computationally expensive

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 191 / 295

Usage of Cryptography

• Encrypting data in communication protocols (prevent eavesdropping)

• Encrypting data elements of files (e.g., passwords stored in a database)

• Encrypting entire files (prevent data leakage if machines are stolen or attacked)

• Encrypting entire file systems (prevent data leakage if machines are stolen or
attacked)

• Encrypting backups stored on 3rd party storage systems

• Encrypting digital media to obtain revenue by selling keys (for example pay TV)

• Digital signatures of files to ensure that changes of file content can be detected or
that the content of a file can be proven to originate from a certain source

• Encrypted token needed to obtain certain services or to authorize transactions

• Modern electronic currencies (cryptocurrency)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 192 / 295

Symmetric Encryption Algorithms and Block Ciphers

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 193 / 295

Substitution Ciphers

Definition (monoalphabetic and polyalphabetic substitution ciphers)

A monoalphabetic substitution cipher is a bijection on the set of symbols of an
alphabet. A polyalphabetic substitution cipher is a substitution cipher with multiple
bijections, i.e., a collection of monoalphabetic substitution ciphers.

• There are |M |! different bijections of a finite alphabet M .

• Monoalphabetic substitution ciphers are easy to attack via frequency analysis since
the bijection does not change the frequency of cleartext characters in the
ciphertext.

• Polyalphabetic substitution ciphers are still relatively easy to attack if the length of
the message is significantly longer than the key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 194 / 295

Permutation Cipher

Definition (permutation cipher)

A permutation cipher maps a plaintext m0, . . . ,ml−1 to mτ(0), . . . ,mτ(l−1) where τ is a
bijection of the positions 0, . . . , l − 1 in the message.

• Permutation ciphers are also called transposition ciphers.

• To make the cipher parametric in a key, we can use a function τk that maps a key
k to bijections.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 195 / 295

Product Cipher

Definition (product cipher)

A product cipher combines two or more ciphers in a manner that the resulting cipher is
more secure than the individual components to make it resistant to cryptanalysis.

• Combining multiple substitution ciphers results in another substitution cipher and
hence is of little value.

• Combining multiple permutation ciphers results in another permutation cipher and
hence is of little value.

• Combining substitution ciphers with permutation ciphers gives us ciphers that are
much harder to break.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 196 / 295

Chosen-Plaintext and Chosen-Ciphertext Attack

Definition (chosen plaintext attack)

In a chosen-plaintext attack the adversary can chose arbitrary cleartext messages m and
feed them into the encryption function E to obtain the corresponding ciphertext.

Definition (chosen ciphertext attack)

In a chosen-ciphertext attack the adversary can chose arbitrary ciphertext messages c
and feed them into the decryption function D to obtain the corresponding cleartext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 197 / 295

Polynomial and Negligible Functions

Definition (polynomial and negligible functions)

A function f : N 7→ R+ is called

• polynomial if f ∈ O(p) for some polynomial p

• super-polynomial if f 6∈ O(p) for every polynomial p

• negligible if f ∈ O(1/|p|) for every polynomial p

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 198 / 295

Polynomial Time and Probabilistic Algorithms

Definition (polynomial time)

An algorithm A is called polynomial time if the worst-case time complexity of A for
input of size n is a polynomial function.

Definition (probabilistic algorithm)

A probabilistic algorithm is an algorithm that may return different results when called
multiple times for the same input.

Definition (probabilistic polynomial time)

A probabilistic polynomial time (PPT) algorithm is a probabilistic algorithm with
polynomial time.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 199 / 295

One-way Functions

Definition (one-way function)

A function f : 0, 1∗ 7→ 0, 1∗ is a one-way function if and only if f can be computed by a
polynomial time algorithm, but any polynomial time randomized algorithm F that
attempts to compute a pseudo-inverse for f succeeds with negligible probability.

• The existence of such one-way functions is still an open conjecture.

• Their existence would prove that the complexity classes P and NP are not equal.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 200 / 295

Security of Ciphers

• What does it mean for an encryption scheme to be secure?

• Consider an adversary who can pick two plaintexts m0 and m1 and who randomly
receives either E(m0) or E(m1).

• An encryption scheme can be considered secure if the adversary cannot distinguish
between the two situations with a probability that is non-negligibly better than 1/2.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 201 / 295

Block Cipher

Definition (block cipher)

A block cipher is a cipher that operates on fixed-length groups of bits called a block.

• A given variable-length plaintext is split into blocks of fixed size and then each
block is encrypted individually.

• The last block may need to be padded using zeros or random bits.

• Encrypting each block individually has certain shortcomings:
• the same plaintext block yields the same ciphertext block
• encrypted blocks can be rearranged and the receiver may not necessarily detect this

• Hence, block ciphers are usually used in more advanced modes in order to produce
better results that reveal less information about the cleartext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 202 / 295

Electronic Code Book Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 203 / 295

Cipher Block Chaining Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 204 / 295

Output Feedback Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 205 / 295

Counter Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 206 / 295

Substitution-Permutation Networks

Definition (substitution-permutation network)

A substitution-permutation network is a block cipher whose bijections arise as products
of substitution and permutation ciphers.

• To process a block of N bits, the block is typically devided into b chunks of
n = N/b bits each.

• Each block is processed by a sequence of steps:
• Substitution step: A chunk of n bits is substituted by applying a substitution box

(S-box).
• Permutation step: A permutation box (P-box) permutes the bits received from

S-boxes to produce bits for the next round.
• key step: A key step maps a block by xor-ing it with a key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 207 / 295

Advanced Encryption Standard (AES)

• Designed by two at that time relatively unknown cryptographers from Belgium
(Vincent Rijmen and Joan Daemen, hence the name Rijndael of the proposal).

• Choosen by NIST (National Institute of Standards and Technology of the USA)
after an open call for encryption algorithms.

• Characteristics:
• overall blocksize: 128 bits
• number of parallel S-boxes: 16
• bitsize of an S-box: 8
• key size and rounds:

• 128 bit key, 10 rounds
• 192 bit key, 12 rounds
• 256 bit key, 14 rounds

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 208 / 295

Advanced Encryption Standard (AES) Rounds

• Round 0:

(a) key step with k0

• Round i: (i = 1, ..., r-1)

(a) substitution step (called sub-bytes) with fixed 8-bit S-box (used 16 times)
(b) permutation step (called shift-row) with a fixed permutation of 128 bits
(c) substitution step (called mix-columns) with a fixed 32-bit S-box (used 4 times)
(d) key step (called add-round-key) with a key ki

• Round r: (no mix-columns)

(a) substitution step (called sub-bytes) with fixed 8-bit S-box (used 16 times)
(b) permutation step (called shift-row) with a fixed permutation of 128 bits
(c) key step (called add-round-key) with a key kr

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 209 / 295

Asymmetric Encryption Algorithms

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 210 / 295

Asymmetric Encryption Algorithms

• Asymmetric encryption schemes work with a key pair:
• a public key used for encryption
• a private key used for decryption

• Everybody can send a protected message to a receiver by using the receiver’s public
key to encrypt the message. Only the receiver knowing the matching private key
will be able to decrypt the message.

• Asymmetric encryption schemes give us a very easy way to digitally sign a message:
A message encrypted by a sender with the sender’s private key can be verified by
any receiver using the sender’s public key.

• Ron Rivest, Adi Shamir and Leonard Adleman (all then at MIT) published the RSA
cryptosystem in 1978 which relies on the factorization problem of large numbers.

• Newer asynchronous cryptosystems often rely on the problem of finding discrete
logarithms.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 211 / 295

Rivest-Shamir-Adleman (RSA)

• Key generation:
1. Generate two large prime numbers p and q of roughly the same length.
2. Compute n = pq and ϕ(n) = (p − 1)(q − 1).
3. Choose a number e satisfying 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.
4. Compute d satisfying 1 < d < ϕ(n) and ed mod ϕ(n) = 1.
5. The public key is (n, e), the private key is (n, d).

The numbers p, q and ϕ(n) are discarded.

• Encryption:
1. The cleartext m is represented as a sequence of numbers mi with

mi ∈ {0, 1, . . . , n − 1}.
2. Using the public key (n, e) compute ci = me

i mod n for all mi .

• Decryption:
1. Using the private key (n, d) compute mi = cdi mod n for all ci .
2. Transform the number sequence mi back into the original cleartext m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 212 / 295

RSA Properties

• Security relies on the problem of factoring very large numbers.

• Quantum computers may solve this problem in polynomial time — so RSA will
become obsolete once someone manages to build quantum computers.

• The prime numbers p and q should be at least 1024 (better 2048) bit long and not
be too close to each other (otherwise an attacker can search in the proximity of√

n).

• Since two identical cleartexts mi and mj would lead to two identical ciphertexts ci
and cj , it is advisable to pad the cleartext numbers with some random digits.

• Large prime numbers can be found using probabilistic prime number tests.

• RSA encryption and decryption is compute intensive and hence usually used only
on small cleartexts.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 213 / 295

Cryptographic Hash Functions

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 214 / 295

Cryptographic Hash Functions

• Cryptographic hash functions serve many purposes:
• data integrity verification
• integrity verification and authentication (via keyed hashes)
• calculation of fingerprints for efficient digital signatures
• adjustable proof of work mechanisms

• A cryptographic hash function can be obtained from a symmetric encryption
algorithm in cipher-block-chaining mode by using the last ciphertext block as the
hash value.

• It is possible to construct more efficient cryptographic hash functions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 215 / 295

Cryptographic Hash Functions

Name Published Digest size Block size Rounds

MD-5 1992 128 b 512 b 4
SHA-1 1995 160 b 512 b 80

SHA-256 2002 256 b 512 b 64
SHA-512 2002 512 b 1024 b 80

SHA3-256 2015 256 b 1088 b 24
SHA3-512 2015 512 b 576 b 24

• MD-5 has been widely used but it is largely considered insecure since the late 1990s.

• SHA-1 is largely considered insecure since the lear 2000s.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 216 / 295

Merkle-Damg̊ard Construction

• The message is padded and postfixed with a length value.

• The function f is a collision-resistant compression function which compresses a
digest-sized input from the previous step (or the initialization vector) and a
block-sized input from the message into a digest-sized value.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 217 / 295

Hashed Message Authentication Codes

• A keyed-hash message authentication code (HMAC) is a specific type of message
authentication code (MAC) involving a cryptographic hash function and a secret
cryptographic key.

• An HMAC can be used to verify both data integrity and authenticity.

• An HMAC does not encrypt the message.

• The message must be sent alongside the HMAC hash. Parties with the secret key
will hash the message again themselves, and if it is authentic, the received and
computed hashes will match.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 218 / 295

HMAC Computation

Given a key K , a hash function H , and a message m, the HMAC using H (HMACH) is
calculated as follows:

HMACH(K ,m) = H((K ′ ⊕ opad) ‖ H((K ′ ⊕ ipad) ‖ m))

• K ′ is derived from the original key K by padding K to the right with extra zeroes
to the input block size of the hash function, or by hashing K if it is longer than
that block size.

• The opad is the outer padding (0x5c5c5c. . . 5c, one-block-long hexadecimal
constant). The ipad is the inner padding (0x363636. . . 3636, one-block-long
hexadecimal constant).

• The symbol ⊕ denotes bitwise exclusive or and the symbol ‖ denotes concatenation.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 219 / 295

Digital Signatures and Certificates

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 220 / 295

Digital Signatures

• Digital signatures are used to prove the authenticity of a message (or document)
and its integrity.
• Receiver can verify the claimed identity of the sender (authentiation)
• The sender can later not deny that he/she sent the message (non-repudiation)
• The message cannot be modified with invalidating the signature (integrity)

• A digital signature means that
• the sender puts a signature into a message (or document) that can be verified and
• that we can be sure that the signature cannot be faked (e.g., copied from some

other message)

• Do not confuse digital signatures, which use cryptographic mechanisms, with
electronic signatures, which may just use a scanned signature or a name entered
into a form.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 221 / 295

Digital Signatures using Asymmetric Cryptosystems

• Direct signature of a document m:
• Signer: S = Ek−1(m)

• Verifier: Dk(S)
?
= m

• Indirect signature of a hash of a document m:
• Signer: S = Ek−1(H(m))

• Verifier: Dk(S)
?
= H(m)

• The verifier needs to be able to obtain the public key k of the signer from a
trustworthy source.

• The signature of a hash is faster (and hence more common) but it requires to send
the signature S along with the document m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 222 / 295

Public Key Certificates

Definition (public key certificate)

A public key certificate is an electronic document used to prove the ownership of a
public key. The certificate includes

• information about the public key,

• information about the identity of its owner (called the subject), and

• the digital signature of an entity that has verified the certificate’s contents (called
the issuer).

• If the signature is valid, and the software examining the certificate trusts the issuer
of the certificate, then it can trust the public key contained in the certificate to
belong to the subject of the certificate.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 223 / 295

Public Key Infrastructure (PKI)

Definition
A public key infrastructure (PKI) is a set of roles, policies, and procedures needed to
create, manage, distribute, use, store, and revoke digital certificates and manage
public-key encryption.

• A central element of a PKI is the certificate authority (CA), which is responsible for
storing, issuing and signing digital certificates.

• CAs are often hierarchically organized. A root CA may delegate some of the work
to trusted secondary CAs if they execute their tasks according to certain rules
defined by the root CA.

• A key function of a CA is to verify the identity of the subject (the owner) of a
public key certificate.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 224 / 295

X.509 Certificate ASN.1 Definition

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 225 / 295

X.509 Certificate ASN.1 Definition

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

-- contains the DER encoding of an ASN.1 value

-- corresponding to the extension type identified

-- by extnID

}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 226 / 295

X.509 Subject Alternative Name Extension

id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

otherName [0] OtherName,

rfc822Name [1] IA5String,

dNSName [2] IA5String,

x400Address [3] ORAddress,

directoryName [4] Name,

ediPartyName [5] EDIPartyName,

uniformResourceIdentifier [6] IA5String,

iPAddress [7] OCTET STRING,

registeredID [8] OBJECT IDENTIFIER }

OtherName ::= SEQUENCE {

type-id OBJECT IDENTIFIER,

value [0] EXPLICIT ANY DEFINED BY type-id }

EDIPartyName ::= SEQUENCE {

nameAssigner [0] DirectoryString OPTIONAL,

partyName [1] DirectoryString }

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 227 / 295

Key Management Schemes

18 Cryptography Primer

19 Symmetric Encryption Algorithms and Block Ciphers

20 Asymmetric Encryption Algorithms

21 Cryptographic Hash Functions

22 Digital Signatures and Certificates

23 Key Management Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 228 / 295

Cryptographic Protocol Notation

A,B , . . . principals
KAB , . . . symmetric key shared between A and B
KA, . . . public key of A
K−1A , . . . private key of A
H cryptographic hash function
NA,NB , . . . nonces (fresh random messages) chosen by A, B , . . .

P ,Q,R variables ranging over principals
X ,Y variables ranging over statements
K variable over a key

{m}K message m encrypted with key K

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 229 / 295

Key Exchange and Ephemeral Keys

Definition (key exchange)

Key exchange (also key establishment) is any method by which cryptographic keys are
exchanged between two parties, allowing use of a cryptographic algorithm.

• Key exchange methods are important to establish ephemeral keys even if two
principals have already access to suitable keys

• Ephemeral keys help to protect keys that are used to bootstrap secure
communication between principals

• Ephemeral keys can provide perfect forward secrecy

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 230 / 295

Diffie-Hellman Key Exchange

• Initialization:
• Define a prime number p and a primitive root g of Zp with g < p. The numbers p

and g can be made public.
• Exchange:

• A randomly picks xA ∈ Zp and computes yA = g xA mod p. xA is kept secret while
yA is sent to B.

• B randomly picks xB ∈ Zp and computes yB = g xB mod p. xB is kept secret while
yB is sent to A.

• A computes:

KAB = y xAB mod p = (g xB mod p)xA mod p = g xAxB mod p

• B computes:

KAB = y xBA mod p = (g xA mod p)xB mod p = g xAxB mod p

• A and B now own a shared key KAB .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 231 / 295

Diffie-Hellman Key Exchange (cont.)

• A number g is a primitive root of Zp = {0, . . . , p − 1} if the sequence
g 1 mod p, g 2 mod p, . . . , gp−1 mod p produces the numbers 1, . . . , p − 1 in any
permutation.

• p should be choosen such that (p − 1)/2 is prime as well.

• p should have a length of at least 2048 bits.

• Diffie-Hellman is not perfect: An attacker can play “man in the middle” (MIM) by
claiming B ’s identity to A and A’s identity to B .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 232 / 295

Needham-Schroeder Protocol

A B

S

1

2

3

5

4

Msg 1: A→ S : A,B ,Na

Msg 2: S → A : {Na,B ,KAB , {KAB ,A}KBS
}KAS

Msg 3: A→ B : {KAB ,A}KBS

Msg 4: B → A : {Nb}KAB

Msg 5: A→ B : {Nb − 1}KAB

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 233 / 295

Kerberos Protocol

A B

S

1

2

4

3

Msg 1: A→ S : A,B
Msg 2: S → A : {Ts , L,KAB ,B , {Ts , L,KAB ,A}KBS

}KAS

Msg 3: A→ B : {Ts , L,KAB ,A}KBS
, {A,Ta}KAB

Msg 4: B → A : {Ta + 1}KAB

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 234 / 295

BAN Logic

• Idea: Use a formal logic to reason about authentication protocols.

• Answer questions such as:
• What can be achieve with the protocol?
• Does a given protocol have stronger prerequisites than some other protocol?
• Does a protocol do something which is not needed?
• Is a protocol minimal regarding the number of messages exchanged?

• The Burrows-Abadi-Needham (BAN) logic was a first attempt to provide a
formalism for authentication protocol analysis.

• The spi calculus, an extension of the pi calculus, was introduced later to analyze
cryptographic protocols.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 235 / 295

Using BAN Logic

• Steps to use BAN logic:

1. Idealize the protocol in the language of the formal logic.
2. Identify your initial security assumptions in the language of BAN logic.
3. Use the productions and rules of the logic to deduce new predicates.
4. Interpret the statements you’ve proved by this process. Have you reached your

goals?
5. Trim unnecessary fat from the protocol, and repeat (optional).

• BAN logic does not prove correctness of the protocol; but it helps to find subtle
errors.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 236 / 295

Part: Secure Communication Protocols

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 237 / 295

Pretty Good Privacy

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 238 / 295

Pretty Good Privacy (PGP)

• PGP was developed by Philip Zimmerman in 1991 and it is rather famous because
PGP also demonstrated why patent laws and export laws in a globalized world need
new interpretations.

• There are nowadays several independent PGP implementations.

• The underlying PGP specification is now called open PGP (RFC 4880).

• A competitor to PGP is S/MIME (which relies on X.509 certificates).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 239 / 295

PGP Signatures

Comparison

Party B

m

Z
−1

D

KA

H

m

H E

K
−1
A

|| Z

E(H(m))

Party A

• A computes c = Z (EK−1
A

(H(m))||m)

• B computes Z−1(c), splits the message and checks the signature by computing
DKA

(EK−1
A

(H(m))) and then checking the hash H(m).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 240 / 295

PGP Confidentiality

Party B

S

m

KSD

D

KB
−1

Z
−1

Z ||

KS

E

E

KB

m

Party A

E(K)

• A encrypts the message using the key Ks generated by the sender and appended to
the encrypted message.

• The key Ks is protected by encrypting it with the public key KB .

• Symmetric encryption is fast while public-key algorithms make it easier to exchange
keys.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 241 / 295

PGP Signatures and Confidentiality

Comparison

S

H

K
−1
A

E

|| Z E ||

KS

KB

E

m

KSD

D

KB
−1

Z
−1

D

KA

H

E(H(m))

Party A Party B

E(K)

• Signature and confidentiality can be combined as shown above.

• PGP uses in addition Radix-64 encoding (a variant of base-64 encoding) to ensure
that messages can be represented using the ASCII character set.

• PGP supports segmentation/reassembly functions for very large messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 242 / 295

PGP Key Management

• Keys are maintained in so called key rings (one for public keys and one for private
keys).

• Key generation utilizes various sources of random information (/dev/random if
available) and symmetric encryption algorithms to generate good key material.

• So called “key signing parties” are used to sign keys of others and to establish a
“web of trust” in order to avoid centralized certification authorities.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 243 / 295

PGP Private Key Ring

Timestamp Key ID Public Key Encrypted Private Key User ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ti Ki mod 264 Ki EH(Pi)
(K−1

i) Useri

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• Private keys are encrypted using EH(Pi)(), which is a symmetric encryption function
using a key which is derived from a hash value computed over a user supplied
passphrase Pi .

• The Key ID is taken from the last 64 bits of the key Ki .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 244 / 295

PGP Public Key Ring

Timestamp Key ID Public Key Owner Trust User ID Signatures Sig. Trust(s)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ti Ki mod 264 Ki otrusti Useri

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• Keys in the public key ring can be signed by multiple parties. Every signature has
an associated trust level:

1. undefined trust
2. usually not trusted
3. usually trusted
4. always trusted

• Computing a trust level for new keys which are signed by others (trusting others
when they sign keys).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 245 / 295

Transport Layer Security

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 246 / 295

Transport Layer Security

• Transport Layer Security (TLS), formerly known as Secure Socket Layer (SSL), was
created by Netscape to secure data transfers on the Web (i.e., to enable commerce
on the Web)

• As a user-space implementation, TLS can be shipped as part of applications (Web
browsers) and does not require operating system support

• TLS uses X.509 certificates to authenticate servers and clients (although TLS layer
client authentication is not often used)

• TLS is widely used to secure application protocols running over TCP (e.g., http,
smtp, ftp, telnet, imap, . . .)

• A datagram version of TLS called DTLS can be used with protocols running over
UDP

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 247 / 295

History of TLS and SSL

Name Organization Published Wire Version

SSL 1.0 Netscape unpublished 1.0
SSL 2.0 Netscape 1995 2.0
SSL 3.0 Netscape 1996 3.0

TLS 1.0 IETF 1999 3.1
TLS 1.1 IETF 2006 3.2
TLS 1.2 IETF 2008 3.3
TLS 1.3 IETF 2018 3.3 + supported versions

• TLS 1.3 is brand new, this material follows TLS 1.2 and TLS 1.3

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 248 / 295

TLS Protocols

• The Handshake Protocol authenticates the communicating parties, negotiates
cryptographic modes and parameters, and establishes shared keying material.

• The Alert Protocol communicates alerts such as closure alerts and error alerts.

• The Record Protocol uses the parameters established by the handshake protocol to
protect traffic between the communicating peers.

• The Record Protocol is the lowest internal layer of TLS and it carries the
handshake and alert protocol messages as well as application data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 249 / 295

TLS Record Protocol

Record Protocol
The record protocol takes messages to be transmitted, fragments the data into
manageable blocks, optionally compresses the data, adds a message authentication
code, and encrypts and transmits the result. Received data is decrypted, verified,
decompressed, reassembled, and then delivered to higher-level clients.

• The record layer is used by the handshake protocol, the change cipher spec
protocol (only TLS 1.2), the alert protocol, and the application data protocol.

• The fragmentation and reassembly provided does not preserve application message
boundaries.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 250 / 295

TLS Handshake Protocol

Handshake Protocol
• Exchange messages to agree on algorithms, exchange random numbers, and check

for session resumption.

• Exchange the necessary cryptographic parameters to allow the client and server to
agree on a premaster secret.

• Exchange certificates and cryptographic information to allow the client and server
to authenticate themselves.

• Generate a master secret from the premaster secret and the exchanged random
numbers.

• Provide security parameters to the record layer.

• Allow client and server to verify that the peer has calculated the same security
parameters and that the handshake completed without tampering by an attacker.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 251 / 295

TLS Change Cipher Spec Protocol

Change Cipher Spec Protocol
The change cipher spec protocol is used to signal transitions in ciphering strategies.

• The protocol consists of a single ChangeCipherSpec message.

• This message is sent by both the client and the server to notify the receiving party
that subsequent records will be protected under the newly negotiated CipherSpec
and keys.

• This protocol does not exist anymore in TLS 1.3.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 252 / 295

TLS Alert Protocol

Alert Protocol
The alert protocol is used to signal exceptions (warnings, errors) that occured during
the processing of TLS protocol messages.

• The alert protocol is used to properly close a TLS connection by exchanging
close notify alert messages.

• The closure exchange allows to detect truncation attacks.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 253 / 295

Secure Shell

24 Pretty Good Privacy

25 Transport Layer Security

26 Secure Shell

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 254 / 295

Secure Shell (SSH)

• SSH provides a secure connection through which user authentication and several
inner protocols can be run.

• The general architecture of SSH is defined in RFC 4251.

• SSH was initially developed by Tatu Ylonen at the Helsinki University of
Technology in 1995, who later founded SSH Communications Security.

• SSH was quickly adopted as a replacement for insecure remote login protocols such
as telnet or rlogin/rsh.

• Several commercial and open source implementations are available running on
almost all platforms.

• SSH is a Proposed Standard protocol of the IETF since 2006.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 255 / 295

SSH Protocol Layers

1. The Transport Layer Protocol provides server authentication, confidentiality, and
integrity with perfect forward secrecy

2. The User Authentication Protocol authenticates the client-side user to the
server

3. The Connection Protocol multiplexes the encrypted data stream into several
logical channels

⇒ SSH authentication is not symmetric!

⇒ The SSH protocol is designed for clarity, not necessarily for efficiency (shows its
academic roots)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 256 / 295

SSH Keys, Passwords, and Passphrases

Host Key

Every machine must have a public/private host key pair. Host Keys are often identified
by their fingerprint.

User Key

Users may have their own public/private key pairs.

User Password
Accounts may have passwords to authenticate users.

Passphrase
The storage of a user’s private key may be protected by a passphrase.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 257 / 295

SSH Features: TCP Forwarding

ssh −f joe@example.com −L 2000:example.com:25 −N

s
m

tp

s
s

h

22 25

s
s

h

m
a

il

2000 encrypted

example.com

• TCP forwarding allows users to tunnel unencrypted traffic through an encrypted
SSH connection.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 258 / 295

SSH Features: X11 Forwarding

DISPLAY

s
s

h

X
1

1
encrypted

example.com

ssh −X joe@example.com

x
e

y
e

s

s
s

h

22

multiple channels

• X11 forwarding is a special application of TCP forwarding allowing X11 clients on
remote machines to access the local X11 server (managing the display and the
keyboard/mouse).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 259 / 295

SSH Features: Connection Sharing

ssh joe@example.com

s
s

h

encrypted

example.com

s
s

h

s
s

h

22

multiple channels
s

s
h

local socket

• New SSH connections hook as a new channel into an existing SSH connection,
reducing session startup times (speeding up shell features such as tab expansion).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 260 / 295

SSH Features: IP Tunneling

1
0

.0
.9

9
.0

/2
4

s
s

h

encrypted

example.com

s
s

h

s
s

h

ssh −f −w 0:1 example.com

tun0

IP

10.1.1.1

IP

tun110.1.1.2

ifconfig tun0 10.1.1.1 10.1.1.2 \

route add 10.0.99.0/24 10.1.1.2

 netmask 255.255.255.255 netmask 255.255.255.255

route add 10.0.50.0/24 10.1.1.1

ifconfig tun0 10.1.1.2 10.1.1.1 \

1
0

.0
.5

0
.0

/2
4

• Tunnel IP packets over an SSH connection by inserting tunnel interfaces into the
kernels and by configuring IP forwarding.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 261 / 295

SSH Features: SSH Agent

ssh joe@example.com

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h

22longlived
handling of keys

• Maintains client credentials during a login session so that credentials can be reused
by different SSH invocations without further user interaction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 262 / 295

SSH Features: SSH Agent Forwarding

ssh ben@example.org

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h

22longlived
handling of keys

s
s

h

multiple channels

forwarded
agent endpoint

ssh joe@example.com

• An SSH server emulates an SSH Agent and forwards requests to the SSH Agent of
its client, creating a chain of SSH Agent delegations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 263 / 295

SSH Transport Protocol

• Transport Protocol (RFC 4253) provides
• strong encryption,
• server authentication,
• integrity protection, and
• optionally compression.

• SSH transport protocol typically runs over TCP

• 3DES (required), AES128 (recommended)

• hmac-sha2-256 (recommended, see RFC 6668)

• Automatic key re-exchange, usually after 1 GB of data have been transferred or
after 1 hour has passed, whichever is sooner.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 264 / 295

SSH Key Exchange

• The SSH host key exchange identifies a server by its hostname or IP address and
possibly port number.

• Other key exchange mechanisms use different naming schemes for a host.

• Different key exchange algorithms
• Diffie-Hellman style key exchange
• GSS-API style key exchange

• Different Host key algorithms
• Host key used to authenticate key exchange
• SSH RSA and DSA keys
• X.509 (under development)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 265 / 295

SSH User Authentication

• Executes after transport protocol initialization (key exchange) to authenticate
client.

• Authentication methods:
• Password (classic password authentication)
• Interactive (challenge response authentication)
• Host-based (uses host key for user authentication)
• Public key (usually DSA or RSA keypairs)
• GSS-API (Kerberos / NETLM authentication)
• X.509 (under development)

• Authentication is client-driven.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 266 / 295

SSH Connection Protocol

• Allows opening of multiple independent channels.

• Channels may be multiplexed in a single SSH connection.

• Channel requests are used to relay out-of-band channel specific data (e.g., window
resizing information).

• Channels commonly used for TCP forwarding.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 267 / 295

OpenSSH Privilege Separation

• Privilege separation is a technique in which a program is divided into parts which
are limited to the specific privileges they require in order to perform a specific task.

• OpenSSH is using two processes: one running with special privileges and one
running under normal user privileges

• The process with special privileges carries out all operations requiring special
permissions.

• The process with normal user privileges performs the bulk of the computation not
requiring special rights.

• Bugs in the code running with normal user privileges do not give special access
rights to an attacker.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 268 / 295

Part: Information Hiding and Privacy

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 269 / 295

Steganography and Watermarks

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 270 / 295

Information Hiding

Definition (information hiding)

Information hiding aims at concealing the very existence of some kind of information for
some specific purpose.

• Information hiding itself does not aim at protecting message content

• Encryption protects message content but is by itself not hide the existence of a
message

• Information hiding techniques are often used together with encryption in order to
both hide the existence of messages and to protect messages in case their existance
is uncovered

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 271 / 295

Steganography

Definition (steganography)

Steganography is the embedding some information (hidden-text) within a digital media
(cover-text) so that the resulting digital media (stego-text) looks unchanged
(imperceptible) to a human/machine.

• Information hiding explores the fact that there are often unused or redundant bits
in digital media that can be used to carry hidden digital information.

• The challenge is to identify unused or redundant bits and to encode hidden digital
information in them in such a way that the existence of hidden information is
difficult to observe.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 272 / 295

Steganography Workflow

cover−text

or

storage

cover−text encoder stego−text

decoderhidden−text

keys

hidden−text

communication

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 273 / 295

Types of Cover Media

• Information can be hidden in various cover media types:
• Image files
• Audio files
• Video files
• Text files
• Software (e.g., executable files)
• Network traffic (e.g., covert channels)
• Storage devices (e.g., steganographic file systems)
• Events (e.g., timing covert channels, signaling covert channels)
• . . .

• Media types of large size usually make it easier to hide information.

• Robust steganographic methods may survive some typical modifications of
stego-texts (e.g., cropping or recoding of images).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 274 / 295

Watermarking

Definition (watermarking)

Watermarking is the embedding some information (watermark) within a digital media
(cover-text) so that the resulting digital media looks unchanged (imperceptible) to a
human/machine.

• Watermarking:
• The hidden information itself is not important.
• The watermark says something about the cover-text.

• Steganography:
• The cover-text is not important, it only conveys the hidden information.
• The hidden text is the valuable information, and it is independent of cover-text.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 275 / 295

Types of Steganographic Algorithms

• fragile vs. robust
• Fragile: Modifiations of stego-text likly destroys hidden text.
• Robust: Hidden text is likely to survive modifications of the stego-text.

• blind vs. semi-blind vs. non-blind
• Blind requires the original cover-text for detection / extraction.
• Semi-blind needs some information from the embedding not not the whole

cover-text
• Non-blind does not need any information for detection / extraction.

• pure vs. secret key vs. public key
• Pure needs no key for detection / extraction.
• Secret key needs a symmetric key for embedding and extraction.
• Public key needs a secret key for embedding and a public key for extraction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 276 / 295

LSB-based Image Steganography

• Idea:
• Some image formats encode a pixel using three 8-bit color values (red, green, blue).
• Changes in the least-significant bits (LSB) are difficult for humans to see.

• Approach:
• Use a key to select some least-significant bits of an image to embed hidden

information.
• Encode the information multiple times to achieve some robustness against noise.

• Problem:
• Existence of hidden information may be revealed if the statistical properties of

least-significant bits change.
• Fragile against noise such as compression, resizing, cropping, rotating or simply

additive white Gaussian noise.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 277 / 295

DCT-based Image Steganography

• Idea:
• Image formats such as JPEG use discrete cosine transforms (DCT) to encode image

data.
• The manipulation happens in the frequency domain instead of the spatial domain

and this reduces visual attacks against the JPEG image format.

• Approach:
• Replace the least-significant bits of some of the discrete cosine transform

coefficients.
• Use a key to select some DCT coefficients of an image to embed hidden information.

• Problem:
• Existence of hidden information may be revealed if the statistical properties of the

DCT coefficients are changed.
• This risk may be reduced by using an pseudo-random number generator to select

coefficients.
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 278 / 295

Covert Channels

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 279 / 295

Covert Channels

• Covert channels represent unforeseen communication methods that break security
policies. Network covert channels transfer information through networks in ways
that hide the fact that communication takes place (hidden information transfer).

• Covert channels embed information in
• header fields of protocol data units (protocol messages)
• the timing of protocol data units (e.g., inter-arrival times)

• We are not considering here covert channels that are constructed by exchanging
steganographic objects in application messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 280 / 295

Covert Channel Patterns

P1 Size Modulation Pattern
The covert channel uses the size of a header field or of a protocol message to
encode hidden information.

P2 Sequence Pattern
The covert channel alters the sequence of header fields to encode hidden
information.

P3 Add Redundancy Pattern
The covert channel creates new space within a given header field or within a
message to carry hidden information.

P4 PDU Corruption/Loss Pattern
The covert channel generates corrupted protocol messages that contain hidden
data or it actively utilizes packet loss to signal hidden information.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 281 / 295

Covert Channel Patterns

P5 Random Value Pattern
The covert channel embeds hidden data in a header field containing a “random”
value.

P6 Value Modulation Pattern
The covert channel selects one of values a header field can contain to encode a
hidden message.

P7 Reserved/Unused Pattern
The covert channel encodes hidden data into a reserved or unused header field.

P8 Inter-arrival Time Pattern
The covert channel alters timing intervals between protocol messages (inter-arrival
times) to encode hidden data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 282 / 295

Covert Channel Patterns

P9 Rate Pattern
The covert channel sender alters the data rate of a traffic flow from itself or a third
party to the covert channel receiver.

P10 Protocol Message Order Pattern
The covert channel encodes data using a synthetic protocol message order for a
given number of protocol messages flowing between covert sender and receiver.

P11 Re-Transmission Pattern
A covert channel re-transmits previously sent or received protocol messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 283 / 295

Anonymization Terminology

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 284 / 295

Anonymity

Definition (anonymity)

Anonymity of a subject from an attacker’s perspective means that the attacker cannot
sufficiently identify the subject within a set of subjects, the anonymity set.

• All other things being equal, anonymity is the stronger, the larger the respective
anonymity set is and the more evenly distributed the sending or receiving,
respectively, of the subjects within that set is.

• Robustness of anonymity characterizes how stable the quantity of anonymity is
against changes in the particular setting, e.g., a stronger attacker or different
probability distributions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 285 / 295

Unlinkability and Linkability

Definition (unlinkability)

Unlinkability of two or more items of interest (IOIs) (e.g., subjects, messages, actions,
. . .) from an attacker’s perspective means that within the system, the attacker cannot
sufficiently distinguish whether these IOIs are related or not.

Definition (linkability)

Linkability of two or more items of interest (IOIs) (e.g., subjects, messages, actions,
. . .) from an attacker’s perspective means that within the system, the attacker can
sufficiently distinguish whether these IOIs are related or not.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 286 / 295

Undetectability and Unobservability

Definition (undetectability)

Undetectability of an item of interest (IOI) from an attackers perspective means that
the attacker cannot sufficiently distinguish whether it exists or not.

Definition (unobservability)

Unobservability of an item of interest (IOI) means

• undetectability of the IOI against all subjects uninvolved in it and

• anonymity of the subject(s) involved in the IOI even against the other subject(s)
involved in that IOI.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 287 / 295

Relationships

With respect to the same attacker, the following relationships hold:

• unobservability ⇒ anonymity

• sender unobservability ⇒ sender anonymity

• recipient unobservability ⇒ recipient anonymity

• relationship unobservability ⇒ relationship anonymity

We also have:

• sender anonymity ⇒ relationship anonymity

• recipient anonymity ⇒ relationship anonymity

• sender unobservability ⇒ relationship unobservability

• recipient unobservability ⇒ relationship unobservability

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 288 / 295

Pseudonymity

Definition (pseudonym)

A pseudonym is an identifier of a subject other than one of the subject’s real names.
The subject, which the pseudonym refers to, is the holder of the pseudonym.

Definition (pseudonymity)

A subject is pseudonymous if a pseudonym is used as identifier instead of one of its real
names. Pseudonymity is the use of pseudonyms as identifiers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 289 / 295

Identifiability and Identity

Definition (identifiability)

Identifiability of a subject from an attacker’s perspective means that the attacker can
sufficiently identify the subject within a set of subjects, the identifiability set.

Definition (identity)

An identity is any subset of attribute values of an individual person which sufficiently
identifies this individual person within any set of persons. So usually there is no such
thing as “the identity”, but several of them.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 290 / 295

Identity Management

Definition (identity management)

Identity management means managing various partial identities (usually denoted by
pseudonyms) of an individual person, i.e., administration of identity attributes including
the development and choice of the partial identity and pseudonym to be (re-)used in a
specific context or role.

• A partial identity is a subset of attribute values of a complete identity, where a
complete identity is the union of all attribute values of all identities of this person.

• A pseudonym might be an identifier for a partial identity.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 291 / 295

Mixes and Onion Routing

27 Steganography and Watermarks

28 Covert Channels

29 Anonymization Terminology

30 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 292 / 295

Mix Networks

• A mix network uses special proxies called mixes to send date from a source to a
destination.

• The mixes filter, collect, recode, and reorder messages in order to hide
conversations. Basic operations of a mix:

1. Removal of duplicate messages (an attacker may inject duplicate message to infer
something about a mix.

2. Collection of messages in order to create an ideally large anonymity set.
3. Recoding of messages so that incoming and outgoing messages cannot be linked.
4. Reordering of messages so that order information cannot be used to link incoming

and outgoing messages.
5. Padding of messages so that message sizes do not reveal information to link

incoming and outgoing messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 293 / 295

Onion Routing

• A message m it sent from the source S to the destination T via an overlay network
consisting of the intermediate routers R1, R2, . . . , Rn, called a circuit.

• A message is cryptographically wrapped multiple times such that every router R
unwraps one layer and thereby learns to which router the message needs to be
forwarded next.

• To preserve the anonymity of the sender, no node in the circuit is able to tell
whether the node before it is the originator or another intermediary like itself.

• Likewise, no node in the circuit is able to tell how many other nodes are in the
circuit and only the final node, the ”exit node”, is able to determine its own
location in the chain.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 294 / 295

Tor

• Tor is an anonymization network operated by volunteers supporting the Tor project.

• Every Tor router has a long-term identity key and a short-term onion key.

• The identity key is used to sign TLS certificates and the onion key is used to
decrypt messages to setup circuits and ephemeral keys.

• TLS is used to protect communication between onion routers.

• Directory servers provide access to signed state information provided by Tor routers.

• Applications build circuits based on information provided by directory servers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems May 18, 2018 295 / 295

	Administrivia
	Course Objectives and Grading
	Rules of the Game
	Resources

	Introduction
	Motivation
	Classic Computing Disasters
	Dependability Concepts and Terminology
	Dependability Metrics

	Software Engineering
	General Aspects
	Software Testing
	Software Specification
	Software Verification

	Concurrency and Distributed Algorithms
	Concurrency Overview
	Model of Distributed Algorithms
	Events, Causality, Logical Clocks
	Stable Properties and Snapshots
	Fault Tolerance and Broadcasts
	Communicating Sequential Processes

	Cryptography
	Cryptography Primer
	Symmetric Encryption Algorithms and Block Ciphers
	Asymmetric Encryption Algorithms
	Cryptographic Hash Functions
	Digital Signatures and Certificates
	Key Management Schemes

	Secure Communication Protocols
	Pretty Good Privacy
	Transport Layer Security
	Secure Shell

	Information Hiding and Privacy
	Steganography and Watermarks
	Covert Channels
	Anonymization Terminology
	Mixes and Onion Routing

