Secure and Dependable Systems Module: CO-566
Jacobs University Bremen Date: 2021-02-19
Dr. Jirgen Schonwalder Due: 2021-02-26

SADS 2021 Problem Sheet #2

This problem sheet asks you to convert infix expressions into postfix expressions. The emphasis
of this assignment is on unit testing and on fuzzying your expression parser using the american
fuzzy lop (AFL). This assignment naturally builds on the code you have written for the previous
assignment.

Problem 2.1: infix calculator with unit tests (2+2+1 = 5 points)

Using the stack implementation from the first problem sheet, you are going to implement an infix
expression calculator (expr) in C. Here are some example invocations in a shell (the quotes prevent
the expansion of the * by the shell).

$ expr 42

42

$ expr 2 + 3

5

$ expr 2 'x' 3

6

$ expr l(l 2+3 |)| Tx! 2

10

$expr 1 +2+ '(" 3+4+5 ')
15

The calculator should implement integer arithmetic and the operators +, -, *, /, %. It should handle
error cases:

$ expr foo

expr: invalid token 'foo'

$ expr 2 +

expr: missing operand

$ expr 2 4

expr: missing operator

$ expr 2/ 0

expr: arithmetic error

$ expr '(' 2+ 0

expr: missing closing parenthesis
$ expr 2 +0 ')

expr: missing opening parenthesis

a) Implement unit tests (ideally before writing the implementation of the calculator) using the
API defined in the infix.h header file shown at the end of this sheet.

b) Implement the API defined in the infix.h header file. Use good coding techniques such as
defensive programming.

c) Determine the coverage of your unit test collection.

Problem 2.2: fuzzying your calculator (1+2+2 = 5 points)

a) Compile your source code using the AFL fuzzer compiler.
b) Run the AFL fuzzer and document test cases found by the fuzzer.

c) Fix the bugs found by the initial run of the AFL fuzzer until it runs for a “longer” time without
finding additional crashes or hangs.

Submit your source code together with your american fuzzy lop testing documentation as a zip file
(remove all build files before creating the archive).

/*
* expr/src/infiz.h —-

*/
/**% @file */

#ifndef _INFIX_H
#define _INFIX_H

J*k*

\brief Evaluate an expression in infix notation.

This functions takes an array of strings that are interpreted as
tokens of an expression in infix notation. The function returns the
results as a string via the second argument. The result s
allocated using malloc() and must be freed by the caller of this
function. Note that the function may return a NULL pointer tf no
result was calculated. The return value of the function indicates
whether the evaluation of the expression in reverse polish notation
was successful or there were any errors.

\param token Tokens of an expression (NULL-terminated array).
\param result Pointer to the string holding the result (malloced).
\result One of the error codes defined above.

¥ % ¥ ¥ X X X X X X X * * *

*/
int expr_infix_eval_token(char *token[], char **result);

/o *

\brief Evaluate an ezpression in infiz notation.

This function splits the expression contained in the stiring expr
tnto an array of strings and then interpretes the array as tokens
of an expression in infix notation. The function returns

the results as a string via the second argument. The result s
allocated using malloc() and must be freed by the caller of this
function. Note that the function may return a NULL pointer tf no
result was calculated. The return value of the function indicates
whether the evaluation of the expression in reverse polish notation
was successful or there were any errors.

\param ezxpr The expression (whitespace separated numbers and operators)
\param result Pointer to the string holding the result (malloced).
\result One of the error codes defined above.

¥ % X ¥ ¥ X X X X X X * ¥ *x *

*/
int expr_infix_eval(const char *expr, char **result);

#end1 f

