
Secure and Dependable Systems ’2021

Jürgen Schönwälder

Jacobs University Bremen

April 4, 2022

https://cnds.jacobs-university.de/courses/sads-2021

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 1 / 264

https://cnds.jacobs-university.de/courses/sads-2021

Part: Administrivia

1 Objectives and Assessment

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 2 / 264

Objectives and Assessment

1 Objectives and Assessment

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 3 / 264

Content and Educational Aims

• This module introduces students to the fundamentals of computer security and
techniques used to build and analyze dependable systems.

• This topic is important since computer systems are increasingly embedded in
everyday objects or taking over important control functions. Furthermore,
computer systems control complex communication systems that form critical
infrastructures of the modern globalized world.

• Proper protection of information requires and applied understanding of
cryptography and how cryptographic primitives are used to secure data and
information exchanges.

• The aim of this module is to make students aware of what types of security
vulnerabilities may arise in computing systems and how to prevent, identify, and fix
them.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 4 / 264

Intended Learning Outcomes

By the end of this module, students will be able to

• recall dependability terminology and concepts;

• apply testing techniques such as mutation testing, fuzzying, and fault injection;

• explain control flow attacks and injection attacks and defense mechanisms;

• describe network data plane and control plane attacks and defense mechanisms;

• understand symmetric and asymmetric cryptographic algorithms;

• explain how digital signatures and public key infrastructures work;

• analyze key exchange protocols for weaknesses;

• describe secure network protocols (e.g., PGP, TLS, SSH);

• recall anonymity terminology and concepts;

• discuss information hiding mechanisms (e.g., steganography, watermarking);

• illustrate anonymization techniques (mixes, onion routing).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 5 / 264

Learning and Assessment

• Assignments
• Learn by applying concepts in concrete tasks
• Some assignments may require some time to solve
• Consider forming study groups
• Assignments prepare yourself for the final exam

• Quizzes
• Moodle quizzes to test your knowledge
• Prepare yourself for the final exam

• Final Exam (100%)
• Covers the whole course, closed book (and closed computers)
• Cheat sheet (handwritten A4 single sided) allowed

• Auditing
• To earn an audit, you have to pass an oral interview about key concepts introduced

in the course at the end of the semester.
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 6 / 264

Organizational Aspects

• All assignments will be linked to the course web page.
https://cnds.jacobs-university.de/courses/sads-2021/

• Solutions for assignments can be submitted using the Moodle system.
https://moodle.jacobs-university.de/

• Online Meetings via Microsoft Teams

• Feedback will be accessible via the Moodle system as well.

• Teaching assistant will be available to discuss course topics and or questions
related to homeworks or to get help during exam preparations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 7 / 264

https://cnds.jacobs-university.de/courses/sads-2021/
https://moodle.jacobs-university.de/

Rules of the Game

1 Objectives and Assessment

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 8 / 264

Code of Academic Integrity

• Jacobs University has a “Code of Academic Integrity”
• this is a document approved by the Jacobs community
• you have signed it during enrollment
• it is a law of the university, we take it seriously

• It mandates good behaviours from faculty and students and it penalizes bad ones:
• honest academic behavior (e.g., no cheating)
• respect and protect intellectual property of others (e.g., no plagiarism)
• treat all Jacobs University members equally (e.g., no favoritism)

• It protects you and it builds an atmosphere of mutual respect
• we treat each other as reasonable persons
• the other’s requests and needs are reasonable until proven otherwise
• if others violate our trust, we are deeply disappointed (may be leading to severe and

uncompromising consequences)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 9 / 264

Culture of Questions, Answers, and Explanations

• Answers to questions require an explanation even if this is not stated explicitly
• A question like ’Does this algorithm always terminate?’ can in principle be answered

with ’yes’ or ’no’.
• We expect, however, that an explanation is given why the answer is ’yes’ or ’no’,

even if this is not explicitly stated.

• Answers should be written in your own words
• Sometimes it is possible to find perfect answers on Wikipedia or Stack Exchange or

in good old textbooks.
• Simply copying the answer of someone else is plagiarism.
• Copying the answer and providing the reference solves the plagiarism issue but

usually does not show that you understood the answer.
• Hence, we want you to write the answer in your own words.
• Learning how to write concise and precise answers is an important academic skill.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 10 / 264

Culture of Interaction

• I am here to help you learn the material.

• If things are unclear, ask questions.

• If I am going too fast, tell me.

• If I am going too slow, tell me.

• Discussions in class are most welcome - don’t be shy.

• Discussions in tutorials are even more welcome - don’t be shy.

• If you do not understand something, chances are pretty high your neighbor does
not understand either.

• Don’t be afraid of asking teaching assistants or myself for help and additional
explanations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 11 / 264

Resources

1 Objectives and Assessment

2 Rules of the Game

3 Resources

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 12 / 264

Study Material and Forums

• There is no required textbook.

• The slides and notes are available on the course web page.
https://cnds.jacobs-university.de/courses/sads-2021/

• We will be using Moodle and it hosts a forum for this course.
https://moodle.jacobs-university.de/

• General questions should be asked on the Moodle forum.
• Faster responses since many people can answer
• Better responses since people can collaborate on the answer

• For individual questions, see me at my office (or talk to me after class).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 13 / 264

https://cnds.jacobs-university.de/courses/sads-2021/
https://moodle.jacobs-university.de/

Part: Introduction

4 Motivation

5 Recent Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 14 / 264

Motivation

4 Motivation

5 Recent Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 15 / 264

Can we trust computers?

• How much do you trust (to function correctly)
• personal computer systems and mobile phones?
• cloud computing systems and services?
• planes, trains, cars, ships?
• communication networks (telephones, radios, tv)?
• power plants and power grids?
• banks and financial trading systems?
• online shopping and e-commerce systems?
• social networks and online information systems?
• information used by insurance or rating companies?
• . . .

• Distinguish between (i) what your intellect tells you to trust and (ii) what you trust
in your everyday life.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 16 / 264

Importance of Security and Dependability

• Software development processes are often too focused on functional aspects and
user interface aspects (since this is what sells products).

• Aspects such as reliability, robustness against failures and attacks, long-term
availability of the software and data, integrity of data, protection of data against
unauthorized access, etc. are often not given enough consideration.

• Software failures can not only have significant financial consequences, they can also
lead to environmental damages or even losses of human lifes.

• Due to the complexity of computing systems, the consequences of faults in one
component are very difficult to estimate.

• Security and dependability aspects must be considered during all phases of a
software development project.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 17 / 264

Recent Computing Disasters

4 Motivation

5 Recent Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 18 / 264

XEROX Scanner Bug 2013

• The left side shows the original, the right side shows the scan

• Notice how some digits have changed from 6 to 8 (and they look like perfect 8s)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 19 / 264

IoT Remove Control Light Bulbs 2018

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 20 / 264

Spectre: Vulnerability of the Year 2018

1 #define PAGESIZE 4096

2 unsigned char array1[16] /* base array */

3 unsigned int array1_size = 16; /* size of the base array */

4 int x; /* the out of bounds index */

5 unsigned char array2[256 * PAGESIZE]; /* instrument for timing channel */

6 unsigned char y; /* does not really matter much */

7

8 // ...

9

10 if (x < array1_size) {

11 y = array2[array1[x] * PAGESIZE];

12 }

• Is the code shown above a vulnerability?

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 21 / 264

Spectre: Main Memory and CPU Memory Caches

• Memory in modern computing systems is layered

• Main memory is large but relatively slow compared to the speed of the CPUs

• CPUs have several internal layers of memory caches, each layer faster but smaller

• CPU memory caches are not accessible from outside of the CPU

• When a CPU instruction needs data that is in the main memory but not in the
caches, then the CPU has to wait quite a while. . .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 22 / 264

Spectre: Timing Side Channel Attack

• A side-channel attack is an attack where information is gained from the physical
implementation of a computer system (e.g., timing, power consumption, radiation),
rather than weaknesses in an implemented algorithm itself.

• A timing side-channel attack infers data from timing observations.

• Even though the CPU memory cache cannot be read directly, it is possible to infer
from timing observations whether certain data resides in a CPU memory cache or
not.

• By accessing specific uncached memory locations and later checking via timing
observations whether these locations are cached, it is possible to communicate data
from the CPU using a cache timing side channel attack.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 23 / 264

Spectre: Speculative Execution

• In a situation where a CPU would have to wait for slow memory, simply guess a
value and continue excution speculatively; be prepared to rollback the speculative
computation if the guess later turns out to be wrong; if the guess was correct,
commit the speculative computation and move on.

• Speculative execution is in particular interesting for branch instructions that depend
on memory cell content that is not found in the CPU memory caches

• Some CPUs collect statistics about past branching behavior in order to do an
informed guess. This means we can train the CPUs to make a certain guess.

• Cache state is not restored during the rollback of a speculative execution.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 24 / 264

Spectre: Reading Arbitrary Memory

• Algorithm:

1. create a small array array1

2. choose an index x such that array1[x] is out of bounds
3. trick the CPU into speculative execution (make it to read array1_size from slow

memory and to guess wrongly)
4. create another uncached memory array called array2 and read

array2[array1[x]] to load this cell into the cache
5. read the entire array2 and observe the timing; it will reveal what the value of

array1[x] was

• This could be done with JavaScript running in your web browser; the first easy
“fix” was to make the JavaScript time API less precise, thereby killing the timing
side channel. (Obviously, this is a hack and not a fix.)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 25 / 264

Dependability Concepts and Terminology

4 Motivation

5 Recent Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 26 / 264

System and Environment and System Boundary

Definition (system, environment, system boundary)

A system is an entity that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world with its natural phenomena. The
other systems are the environment of the given system. The system boundary is the
common frontier between the system and its environment.

• Note that systems almost never exist in isolation.

• We often forget to think about all interactions of a system with its environment.

• Well-defined system boundaries are essential for the design of complex systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 27 / 264

Components and State

Definition (components)

The structure of a system is composed out of a set of components, where each
component is another system. The recursion stops when a component is considered
atomic.

Definition (total state)

The total state of a given system is the set of the following states: computation,
communication, stored information, interconnection, and physical condition.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 28 / 264

Function and Behaviour

Definition (function and functional specification)

The function of a system is what the system is intended to do and is described by the
functional specification.

Definition (behaviour)

The behaviour of a system is what the system does to implement its function and is
described by a sequence of states.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 29 / 264

Service and Correct Service

Definition (service)

The service delivered by a system is its behaviour as it is perceived by a its user(s); a
user is another system that receives service from the service provider.

Definition (correct service)

Correct service is delivered when the service implement the system function.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 30 / 264

Failure versus Error versus Fault

Definition (failure)

A service failure, often abbreviated as failure, is an event that occurs when the delivered
service deviates from correct service.

Definition (error)

An error is the part of the total state of the system that may lead to its subsequent
service failure.

Definition (fault)

A fault is the adjudged or hypothesized cause of an error. A fault is active when it
produces an error, otherwise it is dormant.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 31 / 264

Dependability

Definition (dependability - original)

Dependability is the ability of a system to deliver service than can justifiably be trusted.

Definition (dependability - revised)

Dependability of a system is the ability to avoid service failures that are more frequent
and more severe than is acceptable.

• The revised definition provides a criterion for deciding if a system is dependable.

• Trust can be understood as a form of accepted dependance.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 32 / 264

Dependability Attributes

Definition (dependability attributes)

Dependability has the following attributes:

• Availability : readiness to deliver correct service

• Reliability : continuity of correct service

• Safety : absence of catastrophic consequences on the user(s) and the environment

• Integrity : absence of improper system alterations

• Maintainability : ability to undergo modifications and repairs

• Confidentiality : absence of unauthorized disclosure of information

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 33 / 264

Dependability and Security

Definition (security)

Security is a composite of the attributes of confidentiality, integrity, and availability.

• The definition of dependability considers security as a subfield of dependability.
This does, however, not reflect how research communities have organized
themselves.

• As a consequence, terminology is generally not consistent. Security people, for
example, talk about vulnerabilities while dependability people talk about dormant
faults.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 34 / 264

Fault Prevention

Definition (fault prevention)

Fault prevention aims at preventing the occurance or introduction of faults.

• Application of good software engineering techniques and quality management
techniques during the entire development process.

• Hardening, shielding, etc. of physical systems to prevent physical faults.

• Maintenance and deployment procedures (e.g., firewalls, installation in access
controlled rooms, backup procedures) to prevent malicious faults.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 35 / 264

Fault Tolerance

Definition (fault tolerance)

Fault tolerance aims at avoiding service failures in the presence of faults.

• Error detection aims at detecting errors that are present in the system so that
recovery actions can be taken.

• Recovery handling eliminates errors from the system by rollback to an error-free
state or by error compensation (exploiting redundancy) or by rollforward to an
error-free state.

• Fault handling prevents located faults from being activated again.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 36 / 264

Fault Removal

Definition (fault removal)

Fault removal aims at reducing the number and severity of faults.

• Fault removal during the development phase usually involves verification checks
whether the system satisfies required properties.

• Fault removal during the operational phase is often driven by errors that have been
detected and reported (corrective maintenance) or by faults that have been
observed in similar systems or that were found in the specification but which have
not led to errors yet (preventive maintenance).

• Sometimes it is impossible or too costly to remove a fault but it is possible to
prevent the activation of the fault or to limit the possible impact of the fault, i.e,
its severity.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 37 / 264

Fault Forecasting

Definition (fault forecasting)

Fault forecasting aims at estimating the present number, the future incidences, and the
likely consequences of faults.

• Qualitative evaluation identifies, classifies, and ranks the failure modes, or the
event combinations that would lead to failures.

• Quantitative evaluation determines the probabilities to which some of the
dependability attributes are satisfied.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 38 / 264

Dependability Metrics

4 Motivation

5 Recent Computing Disasters

6 Dependability Concepts and Terminology

7 Dependability Metrics

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 39 / 264

Reliability and MTTF/MTBF/MTTR

Definition (reliability)

The reliability R(t) of a system S is defined as the probability that S is delivering
correct service in the time interval [0, t].

• A metric for the reliability R(t) for non repairable systems is the Mean Time To
Failure (MTTF), normally expressed in hours.

• A metric for the reliability R(t) for repairable systems is the Mean Time Between
Failures (MTBF), normally expressed in hours.

• The mean time it takes to repair a repairable system is called the Mean Time To
Repair (MTTR), normally expressed in hours.

• These metrics are meaningful in the steady-state, i.e., when the system does not
change or evolve.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 40 / 264

Availability

Definition (availability)

The availability A(t) of a system S is defined as the probability that S is delivering
correct service at time t.

• A metric for the average, steady-state availability of a repairable system is
A = MTBF/(MTBF + MTTR), normally expressed in percent.

• A certain percentage-value may be more or less useful depending on the “failure
distribution” (the “burstiness” of the failures).

• Critical computing systems often have to guarantee a certain availability.
Availability requirements are usually defined in service level agreements.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 41 / 264

Availability and the “number of nines”

Availability Downtime per year Downtime per month Downtime per week Downtime per day

90% 36.5 d 72 h 16.8 h 2.4 h
99% 3.65 d 7.20 h 1.68 h 14.4min
99.9% 8.76 h 43.8min 10.1min 1.44min
99.99% 52.56min 4.38min 1.01min 8.64 s
99.999% 5.26min 25.9 s 6.05 s 864.3ms
99.9999% 31.5 s 2.59 s 604.8ms 86.4ms

• It is common practice to express the degrees of availability by the number of nines.
For example, “5 nines availability” means 99.999% availability.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 42 / 264

Safety

Definition (safety)

The safety S(t) of a system S is defined as the probability that S is delivering correct
service or has failed in a manner that does cause no harm in [0, t].

• A metric for safety S(t) is the Mean Time To Catastrophic Failure (MTTC),
defined similarly to MTTF and normally expressed in hours.

• Safety is reliability with respect to malign failures.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 43 / 264

Part: Software Engineering Aspects

8 General Aspects

9 Software Verification

10 Software Testing

11 Software Security by Design

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 44 / 264

General Aspects

8 General Aspects

9 Software Verification

10 Software Testing

11 Software Security by Design

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 45 / 264

Definitions of Software Engineering

Definition
The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software. (IEEE Standard Glossary of Software
Engineering Terminology)

Definition
The establishment and use of sound engineering principles in order to economically
obtain software that is reliable and works efficiently on real machines. (Fritz Bauer)

Definition
An engineering discipline that is concerned with all aspects of software production. (Ian
Sommerville)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 46 / 264

Good Software Development Practices

• Choice of Programming Languages

• Coding Styles

• Documentation

• Version Control Systems

• Code Reviews and Pair Programming

• Automated Build and Testing Procedures

• Issue Tracking Systems

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 47 / 264

Choice of Programming Languages

• Programming languages serve different purposes and it is important to select a
language that fits the given task

• Low-level languages can be very efficient but they tend to allow programmers to
make more mistakes

• High-level languages and in particular functional languages can lead to very
abstract but also very robust code

• Concurrency is important these days and the mechanisms available in different
programming languages can largely impact the robustness of the code

• Programming languages must match the skills of the developer team; introducing a
new languages requires to train developers

• Maintainability of code must be considered when programming languages are
selected

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 48 / 264

Defensive Programming

• It is common that functions are only partially defined.

• Defensive programming requires that the precondition of a function is checked
when a function is called.

• For some complex functions, it might even be useful to check the postcondition,
i.e., that the function did achieve the desired result.

• Many programming languages have mechanisms to insert assertions into the source
code in order to check pre- and postconditions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 49 / 264

Software Verification

8 General Aspects

9 Software Verification

10 Software Testing

11 Software Security by Design

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 50 / 264

Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 51 / 264

Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q}

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 52 / 264

Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that always a result is produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 53 / 264

Software Testing

8 General Aspects

9 Software Verification

10 Software Testing

11 Software Security by Design

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 54 / 264

Unit and Regression Testing

• Unit testing
• Testing of units (abstract data types, classes, . . .) of source code.
• Usually supported by special unit testing libraries and frameworks.

• Regression testing
• Testing of an entire program to ensure that a modified version of a program still

handles all input correctly that an older version of a program handled correctly.

• A software bug reported by a customer is primarily a weakness of the unit and
regression test suites.

• Modern agile software development techniques rely on unit testing and regression
testing techniques.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 55 / 264

Test Coverages

Coverage Description

Function CF Has each function in the program been called?
Statement CS Has each statement in the program been executed?
Branch CB Has each branch of each control structure been executed?
Path CP Has each possible path (start to end) been executed?
Condition CC Has each boolean condition been evaluated to true and false?

• Condition coverage is also sometimes called predicate coverage.

• Test coverage metrics express to which degree the source code of a program is
executed by a particular test suite.

• Test coverage metrics are typically reported as percentages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 56 / 264

Mutation Testing

• Mutation testing evaluates the effectiveness of a test suite.

• The source code of a program is modified algorithmically by applying mutation
operations in order to produce mutants.

• A mutant is “killed” by a test suite if tests fail for the mutant. Mutants that are
not “killed” indicate that the test suite is incomplete.

• Mutation operators often mimic typical programming errors:
• Statement deletion, duplication, reordering, . . .
• Replacement of arithmetic operators with others
• Replacement of boolean operators with others
• Replacement of comparison relations with others
• Replacement of variables with others (of the same type)

• The mutation score is the number of mutants killed normalized by the number of
mutants.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 57 / 264

Fuzzying

• Fuzzying or fuzz testing feeds invalid, unexpected, or simply random data into
computer programs.
• Some fuzzers can generate input based on their awareness of the structure of input

data.
• Some fuzzers can adapt the input based on their awareness of the code structure

and which code paths have already been covered.

• The “american fuzzy lop” (AFL) uses genetic algorithms to adjust generated inputs
in order to quickly increase code coverage.

• AFL has detected a significant number of serious software bugs.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 58 / 264

Fault Injection

• Fault injection techniques inject faults into a program by either
• modifying source code (very similar to mutation testing) or
• injecting faults at runtime (often via modified library calls).

• Fault injection can be highly effective to test whether software deals with rare
failure situations, e.g., the injection of system calls failures that usually work.

• Fault injection can be used to evaluate the robustness of the communication
between programs (deleting, injecting, reordering messages).

• Can be implemented using library call interception techniques.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 59 / 264

Multiple Independent Computations

• Dionysius Lardner 1834:
The most certain and effectual check upon errors which arise in the process of
computation is to cause the same computations to be made by separate and
independent computers; and this check is rendered still more decisive if they
make their computations by different methods.

• Charles Babbage, 1837:
When the formula to be computed is very complicated, it may be algebraically
arranged for computation in two or more totally distinct ways, and two or more
sets of cards may be made. If the same constants are now employed with each
set, we may then be quite sure of the accuracy of them all.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 60 / 264

Software Security by Design

8 General Aspects

9 Software Verification

10 Software Testing

11 Software Security by Design

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 61 / 264

Motivation for Security by Design

• The operating system enforces a coarse-grained operating-system-level security
model, providing isolation of processes, objects accessible in the file system, I/O
channels etc.

• Application software must enforce a more fine-grained application-level security
model, providing isolation of different users in different roles accessing data, etc.

• Security by design is about considering security aspects right at the beginning of a
software development project instead of adding security mechanisms late in the
development process.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 62 / 264

Software Life Cycle Model

1. Beginning of Life

1.1 Idea
1.2 Concept
1.3 Development
1.4 Prototype
1.5 Launch
1.6 Manufacture

2. Middle of Life

2.1 Distribution
2.2 Use
2.3 Service

3. End of Life

3.1 Recycle

• Security by Design stresses the importance to consider security aspects in all phases
of a software life cycle.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 63 / 264

Part: Software Vulnerabilities and Exploits

12 Terminology

13 Control Flow Attacks

14 Code Injection Attacks

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 64 / 264

Terminology

12 Terminology

13 Control Flow Attacks

14 Code Injection Attacks

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 65 / 264

Malware

Definition (malware)

Malware (short for malicious software) is software intentionally designed to cause
damage to a computer system or a computer network.

• A virus depends on a “host” and when activated replicates itself by modifying
other computer programs.

• A worm is self-contained malware replicating itself in order to spread to other
computers.

• A trojan horse is malware misleading users of its true intent.

• Ransomware blocks access to computers or data until a ransom has been paid.

• Spyware gathers information about a person or organization, without their
knowledge.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 66 / 264

Social Engineering

Definition (social engineering)

Social engineering is the psychological manipulation of people into performing actions
or divulging confidential information.

Examples:

• An attacker sends a document that appears to be legitimate in order to attract the
victim to a fraudulent web page requesting access codes (phishing).

• An attacker pretends to be another person with the goal of gaining access
physically to a system or building (impersonation).

• An attacker drops devices that contain malware and look like USB sticks in spaces
visited by a victim (USB drop).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 67 / 264

Backdoors

Definition (backdoor)

A backdoor is a method of bypassing normal authentication systems in order to gain
access to a computer program or a computing system. Backdoors might be created by
malicious software developers, by malicious tools, or by other forms of malware.

Examples:

• Well-known default passwords effectively function as backdoors.

• Backdoors may be inserted by a malicious compiler or linker.

• Cryptographic algorithms may have backdoors.

• Debugging features used during development phases can act as backdoors.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 68 / 264

Rootkits

Definition (rootkit)

A rootkit is a collection of tools that is installed by unauthorized users on systems in
order to hide the existence of attackers and to allow attackers to come back at a later
point in time.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 69 / 264

Advanced Persistent Threats

Definition (advanced persistent threat)

An advanced persistent threat (APT) is a threat actor (an attacker) using advanced
goal-oriented attack techniques, often staying undetected over a long period of time.

• APTs are often associated with nation states or state sponsored attack groups.

• APTs often aim at gaining long-term control of computing systems.

• APTs use extensive intelligence gathering techniques to achieve their goals.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 70 / 264

Threat Modeling

Definition (thread modeling)

Thread modeling is the process of identifying, enumerating, and prioritizing potential
threats of a system.

• Questions to ask:

- What are we working on?
- What can go wrong?
- What are we going to do about it?
- Did we do a good job?

• Threat modeling is of fundamental importance since the security of a system (or a
technical solution) can only be judged relative to a threat model.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 71 / 264

Common Vulnerabilities and Exposures (CVE)

Field Description

identifier Unique identifier for the record (CVE-$year-$number)
description Concise description of the vulerability
references Collection of links to further information
assigning CVE numbering authority (CNA)
created Date when the CVE was allocated or reserved
status Status of the CVE entry (reserved, disputed, reject)

• CVE records aim at uniquely naming vulnerabilities.

• Example: CVE-2014-0160 identifies openssl’s heartbleed vulnerability.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 72 / 264

Common Vulnerability Scoring System (CVSS)

Base Metrik Abbr. Metric Value

Attack Vector AV Network (N), Adjacent (A), Local (L), Physical (P)
Attack Complexity AC Low (L), High (H)
Privileges Required PR None (N), Low (L), High (H)
User Interaction UI None (N), Required (R)
Scope S Unchanged (U), Changed (C)
Confidentiality C High (H), Low (L), None (N)
Integrity I High (H), Low (L), None (N)
Availability A High (H), Low (L), None (N)

• CVSS aims at assessing the severity of computer system security vulnerabilities.

• Example vector: CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 73 / 264

Control Flow Attacks

12 Terminology

13 Control Flow Attacks

14 Code Injection Attacks

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 74 / 264

Stacks (Intel x86 64)

: :

|---------------------|

0x00007fffffffe318 | |] return address

0x00007fffffffe310 | |] saved rbp

|---------------------| <- rbp (frame pointer)

0x00007fffffffe308 | | \

0x00007fffffffe300 | | |

0x00007fffffffe2f8 | | |

0x00007fffffffe2f0 | | | char name[64]

0x00007fffffffe2e8 | | |

0x00007fffffffe2e0 | | |

0x00007fffffffe2d8 | | |

0x00007fffffffe2d0 | | /

'---------------------' <- rsp (stack pointer)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 75 / 264

Shellcode (Intel x86 64)

: :

|---------------------|

0x00007fffffffe318 | d0e2 ffff ff7f 0000 |] return address -.

0x00007fffffffe310 | 0000 0000 0000 0000 |] saved rbp |

|---------------------| <- rbp |

0x00007fffffffe308 | 0000 0000 0000 0000 | \ |

0x00007fffffffe300 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f0 | 0000 0000 0000 0000 | | char name[64] |

0x00007fffffffe2e8 | 6e2f 7368 00ef bead | | |

0x00007fffffffe2e0 | e8ed ffff ff2f 6269 | | |

0x00007fffffffe2d8 | 4831 f648 31d2 0f05 | | |

0x00007fffffffe2d0 | eb0e 5f48 31c0 b03b | / |

'---------------------' <- rsp <----------'

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 76 / 264

Shellcode (Intel x86 64) Improvements

• We have to know the exact start address of the name buffer on the stack. This can
be relaxed by prefixing the shellcode with a sequence of nop instructions that act
as a landing area.

• We have to know where precisely the return address is located on the stack. This
can be relaxed by filling a whole range of the stack space with our jump address.

• Systems with memory management units often randomize the memory layout, i.e.,
the stack is placed randomly in the logical address space whenever a program is
started.

• Systems with memory management units often disable the execute bit for the stack
pages and hence our attack essentially leads to a memory access failure.

• Compilers may insert bit pattern (stack canary) that can be checked to detect
memory overwrites.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 77 / 264

Return Oriented Programming (Intel x86 64)

: :

0x00007fffffffe328 | c0c9 e3f7 ff7f 0000 |] return to system =>

0x00007fffffffe320 | d0e2 ffff ff7f 0000 |] char *command ------.

+---------------------+ |

0x00007fffffffe318 | 5fba e1f7 ff7f 0000 |] return to gadget => |

0x00007fffffffe310 | 0000 0000 0000 0000 |] saved rbp |

|---------------------| <- rbp |

0x00007fffffffe308 | 0000 0000 0000 0000 | \ |

0x00007fffffffe300 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f0 | 0000 0000 0000 0000 | | char name[64] |

0x00007fffffffe2e8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2e0 | 0000 0000 0000 0000 | | |

0x00007fffffffe2d8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2d0 | 2f62 696e 2f73 6800 | / |

'---------------------' <- rsp <--------------'

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 78 / 264

C Format Strings

%s interpret the next argument as a pointer to a null-terminated string
%x interpret the next argument as an integer and print the value in hexadecimal
%#lx interpret the next argument as a long integer and print the value in hexadec-

imal prefixed with 0x

%#018lx interpret the next argument as a long integer and print the value in hexadec-
imal prefixed with 0x and 0-padded filling 18 characters

%n interpret the next argument as a pointer to an integer and write the number
of characters printed so far to the integer pointed to

%4$s interpret the fourth argument as a pointer to a null-terminated string

• The classic C format string can do many fancy things. . .

• We focus here on the subset that is most relevant / convenient for exploits.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 79 / 264

Format String Attacks (Intel x86 64)

: :

| 0000 0000 0000 0001 | long i

| cccc cccc cccc cccc | long c

| 0000 0002 5555 5060 | ??

| 0000 7fff ffff e328 | ??

|---------------------|

0x00007fffffffe218 | |] return address

0x00007fffffffe210 | 0000 7fff ffff e240 |] saved rbp

|---------------------|

0x00007fffffffe208 | |] char *s

0x00007fffffffe200 | aaaa aaaa aaaa aaaa |] long a

0x00007fffffffe1f8 | bbbb bbbb bbbb bbbb |] long b

|---------------------|

: :

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 80 / 264

Code Injection Attacks

12 Terminology

13 Control Flow Attacks

14 Code Injection Attacks

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 81 / 264

Code Injection Attacks

Definition (code injection attack)

A code injection attack is an attack where input is passed to a program that is internally
generating executable code and where the input is adding code into the generated code.

• Code injection attacks are a common problem of programs that internally generate
code that is interpreted by other system components.

• Code injection is typically caused by a failure to properly validate or sanitize inputs.

• A common target are web services since they often transform input into database
queries and data into scripts executed on clients such as web browsers.

• Code injection can also happen at the system level, e.g., when people carelessly
write shell scripts.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 82 / 264

SQL Injection Attacks

Definition (sql injection attack)

An sql injection attack is a code injection attack where an attacker sends input to an
application with the goal to modify SQL queries made by the application in order to
gain access to additional information or to modify database content.

• SQL injection attacks are often made possible by careless construction of queries.
Here is an example in C:

snprintf(buffer, size,

"SELECT user, balance FROM account WHERE user='%s'", name);

• Prepared statements provide a safe way to construct SQL queries, ensuring that
parameters remains data and do not accidentally become code.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 83 / 264

Cross-Site-Scripting Attacks

Definition (cross-site scripting attack)

A cross-site scripting attack is a code injection attack where an attacker injects scripts
into web pages such that the injected scripts are delivered for execution to browsers run
by other users of the web page.

• A simple cross-site scripting attack would be to submit some JavaScript to a web
form, e.g.:

<script type="text/javascript">alert("XSS");</script>

• If the browser does not check the content, it may deliver the script to other users.

• The script running in the browser of other users can then do malicious things such
as collecting information or displaying phishing dialogues.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 84 / 264

First and Second Order Attacks

Definition (first order attacks)

First order attacks are caused by inputs that directly cause modified code to be
generated and executed.

Definition (second-order-attacks)

Second order attacks are caused by data that is stored in the system and causes system
components to execute modified code when the data is processed.

• The injection of attack data and the execution of the attack are often decoupled in
second order attacks, making it harder to track down the origin of the attack data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 85 / 264

Part: Network Vulnerabilities

15 Internet Architecture Review

16 Data Plane Attacks

17 Control Plane Attacks

18 Reconnaissance and Denial of Service

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 86 / 264

Internet Architecture Review

15 Internet Architecture Review

16 Data Plane Attacks

17 Control Plane Attacks

18 Reconnaissance and Denial of Service

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 87 / 264

OSI / Internet Layering Model
U

s
e

r
S

p
a

c
e

 P
ro

c
e

s
s

e
s

IP Host

Physical

IEEE 802 Bridge IP Router IP Router IEEE 802 Bridge IP Host

Ethernet,

WLAN

Link

Network

Transport

bridging

forwarding

bridging

forwarding

O
p

e
ra

ti
n

g
 S

y
s

te
m

H
a

rd
w

a
re

Session

WLAN

Ethernet,

Address

MAC

IPv6, IPv4

TCP, UDP, ...

Address

IP

Address

IP + Port

TLS, ...
Address

Name + Port

XML, JSON, ...

HTTP, SMTP, ...
Address

URL

sockets sockets

Presentation

Application

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 88 / 264

Data Plane vs. Control Plane vs. Management Plane

• Data Plane:
• Concerned with the forwarding of data
• Acting in the resolution of milliseconds to microseconds
• Often implemented in hardware to achieve high data rates

• Control Plane:
• Concerned with telling the data plane how to forward data
• Acting in the resolution of seconds or sub-seconds
• Traditionally implemented as part of routers and switches

• Management Plane:
• Concerned with the configuration and monitoring of data and control planes
• Acting in the resolution of minutes or even much slower
• May involve humans in decision and control processes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 89 / 264

Conceptual Planes of a Forwarding Device

− ...

forwarding

control mgmt
management plane

protocolsprotocols

control plane

data plane protocols

− OSPF

− ISIS

− BGP

− OpenFlow

− SNMP

− NETCONF

− ...

− SSH + CLI

− RESTCONF

− Spanning Tree

• The control plane controls the forwarding plane while the management plane
controls the control plane and (if necessary) the forwarding plane.

• The separation in planes is conceptual, implementations often choose shortcuts for
performance reasons.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 90 / 264

Centralized vs. Distributed vs. Hierarchical

controller

C

C

C

C

C

C C

C

C

C

C

M

M

M

M

M

M

M

M

M M

M

FWD

FWD

FWD

FWD

FWD

FWD

FWD

FWD

FWD FWD

FWD FWD

C

C

C

C

C

C C

C

C

C

C

M

M

M

M

M

M

M

M

M M

M

FWD

FWD

FWD

FWD

FWD

FWD

FWD

FWD

FWD FWD

FWD

C

C

C

C

C

C C

C

C

C

C

M

M

M

M

M

M

M

M

M M

M

FWD

FWD

FWD

FWD

FWD

FWD

FWD

FWD

FWD FWD

• The Internet consists of networks operated by different organizations (so called
autonomous systems).

• Autonomous systems freely decide how they organize their internal control plane.

• Autonomous systems peer with each other to establish a network of networks

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 91 / 264

IEEE 802 Forwarding and Bridging

• Backward learning:
• Learn from source addresses on which ports a MAC address is located.
• Forward data frames according to previously learned addresses and fallback to

flooding when necessary.
• Newly learned information replaces old information and learned information is

deleted after a while.

• Spanning tree:
• To avoid forwarding loops, bridges run a distributed protocol to establish a spanning

tree.
• All ports violating the spanning tree are disabled.
• A new spanning tree is calculated whenever changes are detected, i.e., when bridges

join or leave.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 92 / 264

IP Routing

• Distance-vector routing:
• Neighboring routers exchange periodically distance vectors indicating which prefixes

are reachable with a known distance.
• The distributed Bellman-Ford algorithm converges after a couple of rounds but

there can be cases where it does not converge.

• Link-state shortest path routing:
• Routers exchange information about the network topology (the link state).
• Using Dijkstra’s algorithm, routers calculate the shortest paths to all destinations.

• Path-vector policy routing:
• Neighboring routers (peers) exchange path vectors to establish shared state about

the paths and prefixes that are known in the network.
• Policy-driven decision logic is used to select forwarding paths and path to exchange

with routing peers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 93 / 264

Software-Defined Networks (SDN)

• Software-defined networks build on the idea to separate the control plane from the
forwarding plane.

• The separation allows to evolve the control plane much faster and it reduces the
complexity of forwarding devices.

• Forwarding in software-defined networks is flow-based instead of being
destination-based.

• Controller running on commodity hardware provide rich APIs that can be used to
program the forwarding behaviour of a network to support the business models of a
network operator in flexible ways.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 94 / 264

Data Plane Attacks

15 Internet Architecture Review

16 Data Plane Attacks

17 Control Plane Attacks

18 Reconnaissance and Denial of Service

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 95 / 264

Attacks on the IEEE 802 Link Layer

• MAC address spoofing is the act of changing the factory-assigned MAC address in
order to claim a different identity on a LAN.

• Many bridges use backward learning to populate the forwarding database. An
attacker can try to make a bridge learn fake entries in an attempt to overflow its
forwarding database, which forces the bridge to broadcast traffic.

• Virtual LANs (VLANs) are widely deployed to separate traffic on a LAN. VLAN
hopping attacks can be used to gain access to a VLAN that is normally not
accessible.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 96 / 264

Attacks on the Physical Layer

• Generating jamming signals to prevent communication

• Generating inference to cause errors that need correction

• Eavesdropping on shared media (in particular wireless networks)

• Exploiting electro-magnetic radiation of signals

• Traffic analysis in order to infer communication properties

• Circumventing access control to the physical layer

• Spoofing the identity of a sender/receiver on shared media

• Malicious forwarding devices may redirect, drop, or modify frames

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 97 / 264

Attacks on the IP Network Layer

• Autoconfiguration attacks (false router or DHCP advertisements)

• Attacks on the address translation (ARP / ND spoofing)

• IP spoofing (sending IP packets with false source addresses)

• IP fragmentation attacks (exploiting bugs in fragmentation/reassembly code)

• Injecting error messages to redirect or slow down traffic

• IP address scanning to determine which IP addresses are in use

• Malicious forwarding devices may redirect, drop, or modify packets

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 98 / 264

Attacks on the TCP/UDP/. . . Transport Layer

• Establishing many incomplete connections (e.g., TCP SYN flooding)

• Injecting error messages to terminate transport connections

• Hijacking transport connections

• Port number scanning to determine the set of ports in use

• Attacks to downgrade connection parameters (e.g., TCP window sizes or
congestion state)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 99 / 264

Attacks above the Transport Layer

• Name resolution attack (e.g., DNS cache poisoning)

• Domain name hijacking

• Reflection attacks (send spoofed requests)

• Using name resolution protocols as a covert channel

• Collecting information from local multicast name services

• Downgrading negotiated security parameters

• Attacks on security protocols

• Attacks on authentication protocols

• Unexpected client/server behaviour

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 100 / 264

Control Plane Attacks

15 Internet Architecture Review

16 Data Plane Attacks

17 Control Plane Attacks

18 Reconnaissance and Denial of Service

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 101 / 264

Attacks on IEEE 802 Bridges

• Infjecting messages into the spanning tree protocol in order to direct traffic over
different links

• Injecting messages into the spanning tree protocol in order to become the root of
the spanning tree

• Eavesdropping on the spanning tree protocol and the link-layer discovery protocol
to obtain insight into the layer two topology

• Other autoconfiguration services (such as DHCP, although not really a layer two
function) may be used to trick end systems into using wrong network configuration
settings.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 102 / 264

Attacks on IP Routing

• BGP hijacking attacks such as
• announcing IP prefixes not owned by the AS
• announcing more specific IP prefixes than the owning AS
• announcing shorter routes for IP prefixes in order to blockhole traffic

• BGP Route flapping and flap dampening issues

• BGP routing instabilities (sometimes caused by misconfigurations)

• OSPF attacks on the construction of the link-state database

• RPL attacks on the construction of destination oriented directed acyclic graphs

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 103 / 264

Attacks on SDN Controller

• Resource exhaustion attacks on the controller

• Unauthorized controller access

• Handling fraudulent control rules

• Resource exhaustion attacks via a controller on data plane devices

• Controller hijacking or compromise attacks

• Fingerprinting controller

• Races in the control plane

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 104 / 264

Reconnaissance and Denial of Service

15 Internet Architecture Review

16 Data Plane Attacks

17 Control Plane Attacks

18 Reconnaissance and Denial of Service

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 105 / 264

Network Reconnaissance

Definition (network reconnaissance)

Network reconnaissance is the collection of information about a target network, usually
from a remote location by using the network itself to collect the information.

• Many network protocols leak information (originally for debugging purposes)

• Tools periodically scan the network and collect leaked information

• Shodan is a search engine for devices connected to the Internet

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 106 / 264

https://www.shodan.io/

Network Scans and Port Scans

Definition (network scan)

A network scan attempts to probe all addresses in a network address space to determine
whether they are active and reachable.

Definition (port scan)

A port scan attempts to probe all transport endpoints associated with a network
endpoint in order to determine whether they are providing service, filtered, or closed.

• Network scans are sometimes called horizontal scans

• Port scans are sometiems called vertical scans

• Horizontal and vertical scans can be combined

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 107 / 264

Denial of Service Attacks

Definition (denial of service)

A denial of service (DoS) attack attempts to stop legitimate users from using network
services by exhausting network resources (i.e., network capacity) or server resources
(e.g., sockets, memory, processing capacity, I/O capacity).

Definition (distributed denial of service)

A distributed denial of service (DDoS) attack is a DoS attack where multiple distributed
nodes attack a target jointly in a coordinated fashion.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 108 / 264

Types of Denial of Service Attacks

Network DoS Attacks

- Targeting network resources

- Direct flooding (volumetric)

- Indirect flooding (reflection)

- Indirect flooding with amplification

- Protocol (mis-)feature exploitation

Application DoS Attacks

- Targeting server resources

- Session flooding

- Request flooding

- Slow requests / responses

- Application (mis-)feature exploitation

Definition (botnet)

A botnet is a network of devices connected to the Internet that are under the control of
an attacker and execute attacks if ordered via a command and control channel.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 109 / 264

Reflection and Amplification

bot

dst=reflector

src=target

dst=amplifier

src=reflector

dst=target

src=amplifier

dst=target

bot reflector target amplifier

src=target

• Reflection: Sending IP packets with spoofed source addresses to a reflector such
that the response from the reflector hits the target.

• Amplification: Choosing a reflector creating responses that are much bigger than
the original request.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 110 / 264

Defense Techniques

1. Employing ingress and egress filtering (being a good citizen)

2. Identifying and filtering “unusual” traffic in the network

3. Upstream signaling of attacks and filtering inside of service provider networks or
internet exchanges

4. Robust service design and implementation

5. Service scalability via load balancing and suitable scalable service designs

6. Outsourcing of services to distributed clouds offering sustainability against denial of
service attacks

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 111 / 264

Part: Cryptography

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 112 / 264

Cryptography Terminology

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 113 / 264

Try to read the following text. . .

Jrypbzr gb Frpher naq Qrcraqnoyr Flfgrzf!

W!eslmceotmsey St oe lSbeacdunreep eaDn d

J!rfyzprbgzfrl Fg br yFornpqhaerrc rnQa q

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 114 / 264

Terminology (Cryptography)

• Cryptology subsumes cryptography and cryptanalysis:
• Cryptography is the art of secret writing.
• Cryptanalysis is the art of breaking ciphers.

• Encryption is the process of converting plaintext into an unreadable form, termed
ciphertext.

• Decryption is the reverse process, recovering the plaintext back from the ciphertext.

• A cipher is an algorithm for encryption and decryption.

• A key is some secret piece of information used as a parameter of a cipher.
(The key parameter customizes the algorithm used to produce ciphertext.)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 115 / 264

Cryptosystem

Definition (cryptosystem)

A cryptosystem is a quintuple (M ,C ,K ,Ek ,Dk), where

• M is a cleartext space,

• C is a ciphertext space,

• K is a key space,

• Ek : M → C is an encryption function with parameter k ∈ K , and

• Dk : C → M is a decryption function with parameter k ∈ K .

For a given k and all m ∈ M , the following holds:

Dk(Ek(m)) = m

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 116 / 264

Cryptosystem Requirements

• The functions Ek and Dk must be efficient to compute.

• It must be easy to find a key k ∈ K and the functions Ek and Dk .

• The security of the system rests on the secrecy of the key and not on the secrecy of
the functions Ek and Dk (the algorithms).

• For a given c ∈ C , it is difficult to systematically compute
• Dk even if m ∈ M with Ek(m) = c is known
• a cleartext m ∈ M such that Ek(m) = c .

• For a given c ∈ C , it is difficult to systematically determine
• Ek even if m ∈ M with Ek(m) = c is known
• c ′ ∈ C with c ′ 6= c such that Dk(c ′) is a valid cleartext in M.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 117 / 264

Symmetric vs. Asymmetric Cryptosystems

Symmetric Cryptosystems
• In a symmetric cryptosystem, all parties involved share the same key k and the key

needs to be kept secret.

Asymmetric Cryptosystems
• In an asymmetric cryptosystems, each party involved has a pair of keys (k , k−1)

where the public key k is used for encryption while the associated private key k−1 is
used for decryption.

• Symmetric cryptosystems: AES, DES (outdated), Twofish, Serpent, IDEA, . . .

• Asymmetric cryptosystems: RSA, DSA, ElGamal, ECC, . . .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 118 / 264

Cryptographic Hash Functions

Definition (cryptographic hash function)

A cryptographic hash function H is a hash function that meets the following
requirements:

1. The hash function H is efficient to compute for arbitrary inputs m.

2. Given a hash value h, it should be difficult to find an input m such that h = H(m)
(preimage resistance).

3. Given an input m, it should be difficult to find another input m′ 6= m such that
H(m) = H(m′) (2nd-preimage resistance).

4. It should be difficult to find two different inputs m and m′ such that
H(m) = H(m′) (collision resistance).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 119 / 264

Digital Signatures

• Digital signatures prove the authenticity of a message (or document) and its
integrity.
• The receiver can verify the claimed identity of the sender (authentication).
• The sender can not deny that it did sent the message (non-repudiation).
• The receiver can verify that the messages was not tampered with (integrity).

• Digitally signing a message (or document) means that
• the sender attaches a signature to a message (or document) that can be verified and
• that we can be sure that the signature cannot be faked (e.g., copied from some

other message)

• Digital signatures are often implemented by signing a cryptographic hash of the
message (or document) since this is usually computationally less expensive

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 120 / 264

Usage of Cryptography

• Encrypting data in communication protocols (prevent eavesdropping)

• Hashing data elements of files (e.g., passwords stored in a database)

• Encrypting files (prevent data leakage if machines are stolen or attacked)

• Encrypting file systems (prevent data leakage if machines are stolen)

• Encrypting storage devices (prevent data leakage if machines are stolen)

• Encrypting backups stored on 3rd party storage systems

• Encrypting digital media to obtain revenue by selling keys (e.g., pay TV)

• Digital signatures of files to ensure that changes of file content can be detected or
that the content of a file can be proven to originate from a certain source

• Encrypted token needed to use certain services or to authorize transactions

• Modern electronic currencies (cryptocurrencies)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 121 / 264

Symmetric Encryption Algorithms and Block Ciphers

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 122 / 264

Substitution Ciphers

Definition (monoalphabetic and polyalphabetic substitution ciphers)

A monoalphabetic substitution cipher is a bijection on the set of symbols of an
alphabet. A polyalphabetic substitution cipher is a substitution cipher with multiple
bijections, i.e., a collection of monoalphabetic substitution ciphers.

• There are |M |! different bijections of a finite alphabet M .

• Monoalphabetic substitution ciphers are easy to attack via frequency analysis since
the bijection does not change the frequency of cleartext characters in the
ciphertext.

• Polyalphabetic substitution ciphers are still relatively easy to attack if the length of
the message is significantly longer than the key.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 123 / 264

Permutation Cipher

Definition (permutation cipher)

A permutation cipher maps a plaintext m0, . . . ,ml−1 to mτ(0), . . . ,mτ(l−1) where τ is a
bijection of the positions 0, . . . , l − 1 in the message.

• Permutation ciphers are also called transposition ciphers.

• To make the cipher parametric in a key, we can use a function τk that maps a key
k to bijections.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 124 / 264

Product Cipher

Definition (product cipher)

The combination of two or more ciphers yielding a new cipher that is more secure than
the individual ciphers is called a product cipher.

• Combining multiple substitution ciphers results in another substitution cipher and
hence such a combination does not increase security.

• Combining multiple permutation ciphers results in another permutation cipher and
hence such a combination does not increase security.

• Combining substitution ciphers with permutation ciphers results in ciphers that are
much harder to break than the individual ciphers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 125 / 264

Chosen-Plaintext and Chosen-Ciphertext Attack

Definition (chosen plaintext attack)

In a chosen-plaintext attack the adversary can chose arbitrary cleartext messages m and
feed them into the encryption function E to obtain the corresponding ciphertext.

Definition (chosen ciphertext attack)

In a chosen-ciphertext attack the adversary can chose arbitrary ciphertext messages c
and feed them into the decryption function D to obtain the corresponding cleartext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 126 / 264

Polynomial and Negligible Functions

Definition (polynomial and negligible functions)

A function f : N→ R+ is called

• polynomial if f ∈ O(p) for some polynomial p

• super-polynomial if f 6∈ O(p) for every polynomial p

• negligible if f ∈ O(1/|p|) for every polynomial p : N→ R+

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 127 / 264

Polynomial Time and Probabilistic Algorithms

Definition (polynomial time)

An algorithm A is called polynomial time if the worst-case time complexity of A for
input of size n is a polynomial function.

Definition (probabilistic algorithm)

A probabilistic algorithm is an algorithm that may return different results when called
multiple times for the same input.

Definition (probabilistic polynomial time)

A probabilistic polynomial time (PPT) algorithm is a probabilistic algorithm with
polynomial time.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 128 / 264

One-way Functions

Definition (one-way function)

A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if and only if f can be computed
by a polynomial time algorithm, but any probabilistic polynomial time algorithm F that
attempts to compute a pseudo-inverse of f succeeds with negligible probability.

• The existence of true one-way functions is still an open conjecture.

• Their existence would prove that the complexity classes P and NP are not equal.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 129 / 264

Security of Ciphers

• What does it mean for an encryption scheme to be secure?
• Consider an adversary who can pick two plaintexts m0 and m1 and who randomly

receives either E(m0) or E(m1).
• An encryption scheme can be considered secure if the adversary cannot distinguish

between the two situations with a probability that is non-negligibly better than 1
2 .

• Idealized:
• A perfect encryption scheme requires that an attacker explores the key space.
• Using a large key space, the chances of success are diminishing (and practically

become close to zero)

• Reality:
• Attacks on encryption schemes effectively reduce the key search space.
• To withstand future attacks, people choose key spaces that are much larger than

strictly needed if the encryption scheme would be perfect.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 130 / 264

Block Cipher

Definition (block cipher)

A block cipher is a cipher that operates on fixed-length groups of bits called a block.

• A given variable-length plaintext is split into blocks of fixed size and then each
block is encrypted individually.

• The last block may need to be padded using zeros or random bits.

• Encrypting each block individually has certain shortcomings:
• the same plaintext block yields the same ciphertext block
• encrypted blocks can be rearranged and the receiver may not necessarily detect this

• Hence, block ciphers are usually used in more advanced modes in order to produce
better results that reveal less information about the cleartext.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 131 / 264

Electronic Codebook Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 132 / 264

Cipher Block Chaining Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 133 / 264

Output Feedback Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 134 / 264

Counter Mode

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 135 / 264

Substitution-Permutation Networks

Definition (substitution-permutation network)

A substitution-permutation network is a block cipher whose bijections arise as products
of substitution and permutation ciphers.

• To process a block of N bits, the block is typically devided into b chunks of
n = N/b bits each.

• Each block is processed by a sequence of rounds:
• Key step: A key step maps a block by xor-ing it with a round key.
• Substitution step: A chunk of n bits is substituted by a substitution box (S-box).
• Permutation step: A permutation box (P-box) permutes the bits received from

S-boxes to produce bits for the next round.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 136 / 264

Advanced Encryption Standard (AES)

• Designed by two at that time relatively unknown cryptographers from Belgium
(Vincent Rijmen and Joan Daemen, hence the name Rijndael of the proposal).

• Choosen by NIST (National Institute of Standards and Technology of the USA) in
2000 after an open call for encryption algorithms.

• Characteristics:
• AES has a blocksize of 128 bits.
• AES with 128 bit keys uses 10 rounds.
• AES with 192 bit keys uses 12 rounds.
• AES with 256 bit keys uses 14 rounds.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 137 / 264

Advanced Encryption Standard (AES) Rounds

• Round 0:

(a) key step with k0
• Round i: (i = 1, ..., r-1)

(a) substitution step (called sub-bytes) with fixed 8-bit S-box (used 16 times)
(b) permutation step (called shift-row) with a fixed permutation of 128 bits
(c) substitution step (called mix-columns) with a fixed 32-bit S-box (used 4 times)
(d) key step (called add-round-key) with a key ki

• Round r: (no mix-columns)

(a) substitution step (called sub-bytes) with fixed 8-bit S-box (used 16 times)
(b) permutation step (called shift-row) with a fixed permutation of 128 bits
(c) key step (called add-round-key) with a key kr

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 138 / 264

Asymmetric Encryption Algorithms

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 139 / 264

Asymmetric Encryption Algorithms

• Asymmetric encryption schemes work with a key pair:
• a public key used for encryption
• a private key used for decryption

• Everybody can send a protected message to a receiver by using the receiver’s public
key to encrypt the message. Only the receiver knowing the matching private key
will be able to decrypt the message.

• Asymmetric encryption schemes give us a very easy way to digitally sign a message:
A message encrypted by a sender with the sender’s private key can be verified by
any receiver using the sender’s public key.

• Ron Rivest, Adi Shamir and Leonard Adleman (all then at MIT) published the RSA
cryptosystem in 1978, which relies on the factorization problem of large numbers.

• More recent asynchronous cryptosystems often rely on the problem of finding
discrete logarithms.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 140 / 264

Rivest-Shamir-Adleman (RSA)

• Key generation:

1. Generate two large prime numbers p and q of roughly the same length.
2. Compute n = pq and ϕ(n) = (p − 1)(q − 1).
3. Choose a number e satisfying 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.
4. Compute d satisfying 1 < d < ϕ(n) and ed mod ϕ(n) = 1.
5. The public key is (n, e), the private key is (n, d); p, q and ϕ(n) are discarded.

• Encryption:

1. The cleartext m is represented as a sequence of numbers mi with
mi ∈ {0, 1, . . . , n − 1} and mi 6= p and mi 6= q.

2. Using the public key (n, e) compute ci = me
i mod n for all mi .

• Decryption:

1. Using the private key (n, d) compute mi = cdi mod n for all ci .
2. Transform the number sequence mi back into the original cleartext m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 141 / 264

RSA Math Background

Definition (coprime)

Two integers a and b are coprime if the only positive integer that divides both is 1.

Definition (Euler function)

The function ϕ(n) = |{a ∈ N|1 ≤ a ≤ n ∧ gcd(a, n) = 1}| is called the Euler function.

Theorem (Euler’s theorem)

If a and n are coprime, then aϕ(n) ≡ 1 (mod n).

Theorem
Let m and n be coprime integers. Then ϕ(n ·m) = ϕ(n) · ϕ(m).
If p is a prime number, then ϕ(p) = p − 1.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 142 / 264

RSA Properties

• Security relies on the problem of factoring very large numbers.

• Quantum computers may solve this problem in polynomial time — so RSA will
become obsolete once someone manages to build quantum computers.

• The prime numbers p and q should be at least 1024 (better 2048) bit long and not
be too close to each other (otherwise an attacker can search in the proximity of√

n).

• Since two identical cleartexts mi and mj would lead to two identical ciphertexts ci
and cj , it is advisable to pad the cleartext numbers with some random digits.

• Large prime numbers can be found using probabilistic prime number tests.

• RSA encryption and decryption is compute intensive and hence usually used only
on small cleartexts.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 143 / 264

Elliptic Curve Cryptography (ECC)

Definition (elliptic curve)

An elliptic curve is a plane curve over a finite field which consists of the points

E = {(x , y) | y 2 = x3 + ax + b} ∪ {∞}

with the parameters a and b along with a distinguished point at infinity, denoted ∞.
The parameters a and b have to satisfy 4a3 + 27b2 6= 0.

• For R ,P ,Q on the elliptic curve E , we can define the point addition R = P + Q.

• With point addition, we define the scalar multiplication k · P as repeated additions.

• Given P and k , it is efficient to calculate Q = k · P .

• However, given Q and P , it is difficult to find a k such that Q = k · P .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 144 / 264

Elliptic Curve Point Addition

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 145 / 264

Key Size Comparison

symmetric RSA key size ECC key size

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

• The numbers indicate the key length measured in bits.

• Compared to RSA, ECC achieves good security with much shorter keys.

• Source: NIST, May 2020, doi: 10.6028/NIST.SP.800-57pt1r5

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 146 / 264

https://doi.org/10.6028/NIST.SP.800-57pt1r5

Cryptographic Hash Functions

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 147 / 264

Cryptographic Hash Functions

• Cryptographic hash functions serve many purposes:
• data integrity verification
• integrity verification and authentication (via keyed hashes)
• calculation of fingerprints for efficient digital signatures
• adjustable proof of work mechanisms

• A cryptographic hash function can be obtained from a symmetric block encryption
algorithm in cipher-block-chaining mode by using the last ciphertext block as the
hash value.

• It is possible to construct more efficient cryptographic hash functions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 148 / 264

Cryptographic Hash Functions

Name Published Digest size Block size Rounds

MD-5 1992 128 b 512 b 4
SHA-1 1995 160 b 512 b 80

SHA-256 2002 256 b 512 b 64
SHA-512 2002 512 b 1024 b 80

SHA3-256 2015 256 b 1088 b 24
SHA3-512 2015 512 b 576 b 24

• MD-5 has been widely used but is largely considered insecure since the late 1990s.

• SHA-1 is largely considered insecure since the early 2000s.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 149 / 264

Merkle-Damg̊ard Construction

H

message

lengthpadding

IV f f f final

message

block 1

message message

block 2 block n

• The message is padded and postfixed with a length value.

• The function f is a collision-resistant compression function, which compresses a
digest-sized input from the previous step (or the initialization vector) and a
block-sized input from the message into a digest-sized value.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 150 / 264

Hashed Message Authentication Codes

• A keyed-hash message authentication code (HMAC) is a specific type of message
authentication code (MAC) involving a cryptographic hash function and a secret
cryptographic key.

• An HMAC can be used to verify both data integrity and authenticity.

• An HMAC does not encrypt the message.

• The message must be sent alongside the HMAC hash. Parties with the secret key
will hash the message themselves, and if the received and computed hashes match,
the message is considered is authentic.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 151 / 264

HMAC Computation

Given a key k , a hash function H , and a message m, the HMAC using H (HMACH) is
calculated as follows:

HMACH(k ,m) = H((k ′ ⊕ opad) ‖ H((k ′ ⊕ ipad) ‖ m))

• The key k ′ is derived from the original key k by padding k to the right with extra
zeroes to the input block size of the hash function, or by hashing k if it is longer
than that block size.

• The opad is the outer padding (0x5c5c5c. . . 5c, one-block-long hexadecimal
constant). The ipad is the inner padding (0x363636. . . 36, one-block-long
hexadecimal constant).

• The symbol ⊕ denotes bitwise exclusive or and the symbol ‖ denotes concatenation.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 152 / 264

Authenticated Encryption with Associated Data

• It is often necessary to combine encryption with authentication of the data.

• Encryption protects the data and a message authentication code (MAC) protects
the data against attempts to insert, remove, or modify data.

• Let Ek be an encryption function with key k and Hk a hash-based MAC with key k
and ‖ denotes concatenation.

• Encrypt-then-Mac (EtM)
Ek(M) ‖ Hk(Ek(M))

• Encrypt-and-Mac (EaM)
Ek(M) ‖ Hk(M)

• Mac-then-Encrypt (MtE)
Ek(M ‖ Hk(M))

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 153 / 264

Digital Signatures and Certificates

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 154 / 264

Digital Signatures

• Digital signatures are used to prove the authenticity of a message (or document)
and its integrity.
• A receiver can verify the claimed identity of the sender (authentiation)
• The sender can later not deny that he/she sent the message (non-repudiation)
• The message cannot be modified without invalidating the signature (integrity)

• A digital signature means that
• the sender puts a signature into a message (or document) that can be verified and
• that the receivers can be sure that the signature original (e.g., not copied from

some other message).

• Do not confuse digital signatures, which use cryptographic mechanisms, with
electronic signatures, which may just use a scanned signature or a name entered
into a form.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 155 / 264

Digital Signatures using Asymmetric Cryptosystems

• Direct signature of a document m:
• Signer: S = Ek−1(m)

• Verifier: Dk(S)
?
= m

• Indirect signature of a hash of a document m:
• Signer: S = Ek−1(H(m))

• Verifier: Dk(S)
?
= H(m)

• The verifier needs to be able to obtain the public key k of the signer from a
trustworthy source.

• The signature of a hash is faster (and hence more common) but it requires to send
the signature S along with the document m.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 156 / 264

Public Key Certificates

Definition (public key certificate)

A public key certificate is an electronic document used to prove the ownership of a
public key. The certificate includes

• information about the public key,

• information about the identity of the owner of the key (called the subject),

• information about the lifetime of the certificate, and

• the digital signature of an entity that has verified the certificate’s contents (called
the issuer of the certificate).

• If the signature is valid, and the software examining the certificate trusts the issuer
of the certificate, then it can trust the public key contained in the certificate to
belong to the subject of the certificate.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 157 / 264

Public Key Infrastructure (PKI)

Definition
A public key infrastructure (PKI) is a set of roles, policies, and procedures needed to
create, manage, distribute, use, store, and revoke digital certificates and manage
public-key encryption.

• A central element of a PKI is the certificate authority (CA), which is responsible for
storing, issuing and signing digital certificates.

• CAs are often hierarchically organized. A root CA may delegate some of the work
to trusted secondary CAs if they execute their tasks according to certain rules
defined by the root CA.

• A key function of a CA is to verify the identity of the subject (the owner) of a
public key certificate.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 158 / 264

X.509 Certificate ASN.1 Definition

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 159 / 264

X.509 Certificate ASN.1 Definition

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

-- contains the DER encoding of an ASN.1 value

-- corresponding to the extension type identified

-- by extnID

}

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 160 / 264

X.509 Subject Alternative Name Extension

id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

otherName [0] OtherName,

rfc822Name [1] IA5String,

dNSName [2] IA5String,

x400Address [3] ORAddress,

directoryName [4] Name,

ediPartyName [5] EDIPartyName,

uniformResourceIdentifier [6] IA5String,

iPAddress [7] OCTET STRING,

registeredID [8] OBJECT IDENTIFIER }

OtherName ::= SEQUENCE {

type-id OBJECT IDENTIFIER,

value [0] EXPLICIT ANY DEFINED BY type-id }

EDIPartyName ::= SEQUENCE {

nameAssigner [0] DirectoryString OPTIONAL,

partyName [1] DirectoryString }

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 161 / 264

Automatic Certificate Management Environment (ACME)

• The ACME protocol provides so called Domain Validation certificates.

• It is a challenge-response protocol that aims to verify whether the client has
effective control over a domain name.

• The CA might challenge a client requesting a certificate for example.com
• to provision a DNS record under example.com or
• to provide an HTTP resource under http://example.com.

• ACME runs over HTTPS and message bodies are signed JSON objects.

• The client periodically contacts the server to obtain updated certificates or Online
Certificate Status Protocol (OCSP) responses.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 162 / 264

Key Exchange Schemes

19 Cryptography Terminology

20 Symmetric Encryption Algorithms and Block Ciphers

21 Asymmetric Encryption Algorithms

22 Cryptographic Hash Functions

23 Digital Signatures and Certificates

24 Key Exchange Schemes

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 163 / 264

Cryptographic Protocol Notation

A,B , . . . principals
KAB , . . . symmetric key shared between A and B
KA, . . . public key of A
K−1A , . . . private key of A
H cryptographic hash function
NA,NB , . . . nonces (fresh random messages) chosen by A, B , . . .

P ,Q,R variables ranging over principals
X ,Y variables ranging over statements
K variable over a key

{m}K message m encrypted with key K

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 164 / 264

Key Exchange and Ephemeral Keys

Definition (key exchange)

A method by which cryptographic keys are established between two parties is called a
key exchange or key establishment method.

Definition (ephemeral key)

A cryptographic key that is established for the use in a single session and discarded
afterwards is called an ephemeral key.

Definition (forward secrecy)

A key exchange protocol has forward secrecy if the ephemeral keys established by the
key exchange protocol will not be compromised even if any long-term keys used during
the key exchange protocol are compromised.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 165 / 264

Diffie-Hellman Key Exchange

• Initialization:
• Define a prime number p and a primitive root g of Zp with g < p. The numbers p

and g can be made public.
• Exchange:

• A randomly picks xA ∈ Zp and computes yA = g xA mod p. xA is kept secret while
yA is sent to B.

• B randomly picks xB ∈ Zp and computes yB = g xB mod p. xB is kept secret while
yB is sent to A.

• A computes:

KAB = y xAB mod p = (g xB mod p)xA mod p = g xAxB mod p

• B computes:

KAB = y xBA mod p = (g xA mod p)xB mod p = g xAxB mod p

• A and B now own a shared key KAB .
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 166 / 264

Diffie-Hellman Key Exchange (cont.)

• A number g is a primitive root of Zp = {1, . . . , p − 1} if the sequence
g 1 mod p, g 2 mod p, . . . , gp−1 mod p produces the numbers 1, . . . , p − 1 in any
permutation.

• p should be choosen such that (p − 1)/2 is prime as well.

• p should have a length of at least 2048 bits.

• Diffie-Hellman is not perfect: An attacker can play “man in the middle” (MIM) by
claiming B ’s identity to A and A’s identity to B .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 167 / 264

Needham-Schroeder Protocol

A B

S

1

2

3

5

4

Msg 1: A→ S : A,B ,Na

Msg 2: S → A : {Na,B ,KAB , {KAB ,A}KBS
}KAS

Msg 3: A→ B : {KAB ,A}KBS

Msg 4: B → A : {Nb}KAB

Msg 5: A→ B : {Nb − 1}KAB

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 168 / 264

Kerberos Protocol

A B

S

1

2

4

3

Msg 1: A→ S : A,B
Msg 2: S → A : {Ts , L,KAB ,B , {Ts , L,KAB ,A}KBS

}KAS

Msg 3: A→ B : {Ts , L,KAB ,A}KBS
, {A,Ta}KAB

Msg 4: B → A : {Ta + 1}KAB

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 169 / 264

BAN Logic

• Idea: Use a formal logic to reason about authentication protocols.

• Answer questions such as:
• What can be achieved with the protocol?
• Does a given protocol have stronger prerequisites than some other protocol?
• Does a protocol do something which is not needed?
• Is a protocol minimal regarding the number of messages exchanged?

• The Burrows-Abadi-Needham (BAN) logic was a first attempt to provide a
formalism for authentication protocol analysis.

• The spi calculus, an extension of the pi calculus, was introduced later to analyze
cryptographic protocols.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 170 / 264

Using BAN Logic

• Steps to use BAN logic:

1. Idealize the protocol in the language of the formal BAN logic.
2. Define your initial security assumptions in the language of BAN logic.
3. Use the productions and rules of the logic to deduce new predicates.
4. Interpret the statements you’ve proved by this process. Have you reached your

goals?
5. Remove unnecessary elements from the protocol, and repeat (optional).

• BAN logic does not prove correctness of the protocol; but it helps to find subtle
errors.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 171 / 264

Part: Secure Communication Protocols

25 Pretty Good Privacy (PGP)

26 Transport Layer Security (TLS)

27 Secure Shell (SSH)

28 DNS Security (DNSSEC, DoT, DoH)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 172 / 264

Pretty Good Privacy (PGP)

25 Pretty Good Privacy (PGP)

26 Transport Layer Security (TLS)

27 Secure Shell (SSH)

28 DNS Security (DNSSEC, DoT, DoH)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 173 / 264

Pretty Good Privacy (PGP)

• PGP was developed by Philip Zimmerman in 1991

• PGP got famous because it demonstrated why patent laws and export laws in a
globalized connected world need new interpretations.

• In order to export his PGP implementation in a way that was compliant with the
law, Philip Zimmerman did publish the source code as a book.

• Nowadays, there are several independent PGP implementations.

• The underlying PGP specification is called OpenPGP (RFC 4880).

• PGP uses the concept of a distributed web of trust.

• S/MIME is an alternative to PGP, which uses a hierarchical PKI with X.509
certificates.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 174 / 264

PGP Signatures

Comparison

Party B

m

Z
−1

D

KA

H

m

H E

K
−1
A

|| Z

E(H(m))

Party A

• A computes c = Z (EK−1
A

(H(m))||m)

• B computes Z−1(c), splits the message and checks the signature by computing
DKA

(EK−1
A

(H(m))) and then comparing it with the hash H(m).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 175 / 264

PGP Confidentiality

Party B

S

m

KSD

D

KB
−1

Z
−1

Z ||

KS

E

E

KB

m

Party A

E(K)

• A encrypts the message using the key Ks generated by the sender and appended to
the encrypted message.

• The key Ks is protected by encrypting it with the public key KB .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 176 / 264

PGP Signatures and Confidentiality

Comparison

S

H

K
−1
A

E

|| Z E ||

KS

KB

E

m

KSD

D

KB
−1

Z
−1

D

KA

H

E(H(m))

Party A Party B

E(K)

• Signature and confidentiality can be combined as shown above.

• PGP uses in addition Radix-64 encoding (a variant of base-64 encoding) to ensure
that messages can be represented using the ASCII character set.

• PGP supports segmentation/reassembly functions for very large messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 177 / 264

PGP Key Management

• Keys are maintained in so called key rings:
• one key ring for public keys
• one key ring for private keys

• Keys are identified by their fingerprints.

• Key generation utilizes various sources of random information (/dev/random if
available) and symmetric encryption algorithms to generate good key material.

• So called “key signing parties” are used to sign keys of others and to establish a
“web of trust” in order to avoid centralized certification authorities.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 178 / 264

PGP Private Key Ring

Timestamp Key ID Public Key Encrypted Private Key User ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ti Ki mod 264 Ki EH(Pi)
(K−1

i) Useri

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• Private keys are encrypted using EH(Pi)(), which is a symmetric encryption function
using a key which is derived from a hash value computed over a user supplied
passphrase Pi .

• The Key ID is taken from the last 64 bits of the key Ki .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 179 / 264

PGP Public Key Ring

Timestamp Key ID Public Key Owner Trust User ID Signatures Sig. Trust(s)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ti Ki mod 264 Ki otrusti Useri

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• Keys in the public key ring can be signed by multiple parties. Every signature has
an associated trust level:

1. undefined trust
2. usually not trusted
3. usually trusted
4. always trusted

• Computing a trust level for new keys which are signed by others (trusting others
when they sign keys).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 180 / 264

Transport Layer Security (TLS)

25 Pretty Good Privacy (PGP)

26 Transport Layer Security (TLS)

27 Secure Shell (SSH)

28 DNS Security (DNSSEC, DoT, DoH)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 181 / 264

Transport Layer Security

• Transport Layer Security (TLS), formerly known as Secure Socket Layer (SSL), was
created by Netscape to secure data transfers over the Internet (i.e., to enable
commerce over the Internet)

• As a user-space implementation, TLS can be shipped as part of applications (Web
browsers) and it does not require special operating system support

• TLS uses X.509 certificates to authenticate servers and clients (although TLS layer
client authentication is not often used on the Web)

• TLS is used today to secure many application protocols running over TCP (e.g.,
http, smtp, ftp, telnet, imap, . . .)

• A datagram version of TLS, called DTLS, can be used with protocols running over
UDP (e.g., snmp, dns, . . .)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 182 / 264

History of TLS and SSL

Name Organization Published Wire Version

SSL 1.0 Netscape unpublished 1.0
SSL 2.0 Netscape 1995 2.0
SSL 3.0 Netscape 1996 3.0

TLS 1.0 IETF 1999 3.1
TLS 1.1 IETF 2006 3.2
TLS 1.2 IETF 2008 3.3
TLS 1.3 IETF 2018 3.3 + supported versions

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 183 / 264

TLS Protocols

• The Handshake Protocol authenticates the communicating parties, negotiates
cryptographic modes and parameters, and establishes shared keying material.

• The Alert Protocol communicates alerts such as closure alerts and error alerts.

• The Record Protocol uses the parameters established by the handshake protocol to
protect traffic between the communicating peers.

• The Record Protocol is the lowest internal layer of TLS and it carries the
handshake and alert protocol messages as well as application data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 184 / 264

TLS Record Protocol

Record Protocol
The record protocol takes messages to be transmitted, fragments the data into
manageable blocks, optionally compresses the data, adds a message authentication
code, and encrypts and transmits the result. Received data is decrypted, verified,
decompressed, reassembled, and then delivered to higher-level clients.

• The record layer is used by the handshake protocol, the change cipher spec
protocol (only TLS 1.2), the alert protocol, and the application data protocol.

• The fragmentation and reassembly provided does not preserve application message
boundaries.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 185 / 264

TLS Handshake Protocol

Handshake Protocol
• Exchange messages to agree on algorithms, exchange random numbers, and check

for session resumption.

• Exchange the necessary cryptographic parameters to allow the client and server to
agree on a premaster secret.

• Exchange certificates and cryptographic information to allow the client and server
to authenticate themselves.

• Generate a master secret from the premaster secret and the exchanged random
numbers.

• Provide security parameters to the record layer.

• Allow client and server to verify that the peer has calculated the same security
parameters and that the handshake completed without tampering by an attacker.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 186 / 264

TLS Change Cipher Spec Protocol

Change Cipher Spec Protocol
The change cipher spec protocol is used to signal transitions in ciphering strategies.

• The protocol consists of a single ChangeCipherSpec message.

• This message is sent by both the client and the server to notify the receiving party
that subsequent records will be protected under the newly negotiated CipherSpec
and keys.

• This protocol does not exist anymore in TLS 1.3.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 187 / 264

TLS Alert Protocol

Alert Protocol
The alert protocol is used to signal exceptions (warnings, errors) that occured during
the processing of TLS protocol messages.

• The alert protocol is used to properly close a TLS connection by exchanging
close notify alert messages.

• The closure exchange allows to detect truncation attacks.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 188 / 264

Secure Shell (SSH)

25 Pretty Good Privacy (PGP)

26 Transport Layer Security (TLS)

27 Secure Shell (SSH)

28 DNS Security (DNSSEC, DoT, DoH)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 189 / 264

Secure Shell (SSH)

• SSH provides a secure connection through which user authentication and several
inner protocols can be run.

• The general architecture of SSH is defined in RFC 4251.

• SSH was initially developed by Tatu Ylonen at the Helsinki University of
Technology in 1995, who later founded SSH Communications Security.

• SSH was quickly adopted as a replacement for insecure remote login protocols such
as telnet or rlogin/rsh.

• Several commercial and open source implementations are available running on
almost all platforms.

• SSH is a Proposed Standard protocol of the IETF since 2006.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 190 / 264

SSH Protocol Layers

1. The Transport Layer Protocol provides server authentication, confidentiality, and
integrity with perfect forward secrecy

2. The User Authentication Protocol authenticates the client-side user to the server

3. The Connection Protocol multiplexes the encrypted data stream into several logical
channels

⇒ SSH authentication is not symmetric!

⇒ The SSH protocol is designed for clarity and extensibility but not necessarily for
efficiency.

⇒ Compared to TLS, SSH requires more round-trips to establish a secure transport.

⇒ SSH supports multiplexing, TLS supports session resumption.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 191 / 264

SSH Keys, Passwords, and Passphrases

• Host key :
• Every server must have a public/private host key pair.
• Host keys are used for server authentication.
• Host keys are typically identified by their fingerprint.

• User key :
• Users may have their own public/private key pairs, optionally used to authenticate

users.

• User password :
• Remote accounts may use passwords to authenticate users.

• Passphrase:
• The storage of a user’s private key may be protected by a passphrase.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 192 / 264

SSH Features: Remote Login

s
s

h
encrypted

example.com

s
h

e
ll

s
s

h
d

22

ssh joe@example.com

• This is the simplest use of SSH to access a remote shell.

• The figure is a simplification, there are usually multiple processes involved on the
server side.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 193 / 264

SSH Features: Jump Hosts

s
s

h

hidden.example.com

s
s

h
d

s
s

h
d

jump.example.com

22encrypted encrypted 22

s
h

e
ll

ssh −J gate.example.org joe@hidden.example.com

• Jump hosts can be used to pass through network firewalls.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 194 / 264

SSH Features: TCP Forwarding

25

s
s

h

m
a

il

2000 encrypted

example.com

ssh −f joe@example.com −L 2000:example.com:25 −N

s
m

tp

s
s

h
d

22

• TCP forwarding can be used to tunnel unencrypted TCP connections through an
encrypted SSH connection.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 195 / 264

SSH Features: X11 Forwarding

X11

s
s

h

X
encrypted

example.com

ssh −X joe@example.com

x
e

y
e

s

s
s

h
d

22

multiple channels

X11

• X11 forwarding is a special case of TCP forwarding allowing X11 clients on remote
machines to access the local X11 server (managing the display and the
keyboard/mouse).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 196 / 264

SSH Features: Connection Sharing

s
h

e
ll

s
s

h

encrypted

example.com

22

multiple channels
s

s
h

ssh joe@example.com

s
s

h
d

s
s

h
d

• New SSH connections hook as a new channel into an existing SSH connection,
reducing session startup times (speeding up shell features such as tab expansion).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 197 / 264

SSH Features: IP Tunneling

1
0

.0
.9

9
.0

/2
4

s
s

h

encrypted

example.com

s
s

h
d

ssh −f −w 0:1 example.com

tun0

IP

10.1.1.1

IP

tun110.1.1.2

ifconfig tun0 10.1.1.1 10.1.1.2 \

route add 10.0.99.0/24 10.1.1.2

netmask 255.255.255.255
netmask 255.255.255.255

route add 10.0.50.0/24 10.1.1.1

ifconfig tun0 10.1.1.2 10.1.1.1 \

1
0

.0
.5

0
.0

/2
4

• Tunnel IP packets over an SSH connection by inserting tunnel interfaces into the
kernels and by configuring IP forwarding.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 198 / 264

SSH Features: SSH Agent

s
h

e
ll

s
s

h

a
g

e
n

t
encrypted

example.com

s
s

h
d

22

ssh joe@example.com

• Maintains client credentials during a login session so that credentials can be reused
by different SSH invocations without further user interaction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 199 / 264

SSH Features: SSH Agent Forwarding

s
s

h

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h
d

22

multiple channels

ssh joe@example.com ssh ben@example.org

• An SSH server emulates an SSH Agent and forwards requests to the SSH Agent of
its client, creating a chain of SSH Agent delegations.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 200 / 264

SSH Transport Protocol

Client Server

Protocol Version

Protocol Version

Key Exchange Init (SSH_MSG_KEXINIT)

Key Exchange Init (SSH_MSG_KEXINIT)

Key Exchange Diffie Hellman Init (SSH_MSG_KEXDH_INIT)

Key Exchange Diffie Hellman Reply (SSH_MSG_KEXDH_REPLY)

Key Exchange Diffie Hellman Reply (SSH_MSG_KEXDH_REPLY)

New Keys (SSH_MSG_NEWKEYS)

New Keys (SSH_MSG_NEWKEYS)

Service Request (SSH_MSG_SERVICE_REQUEST)

Service Accept (SSH_MSG_SERVICE_ACCEPT)

Disconnect (SSH_MSG_DISCONNECT)

Disconnect (SSH_MSG_DISCONNECT)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 201 / 264

SSH User Authentication

Client Server

Authentication Request (SSH_MSG_USERAUTH_REQUEST)

Authentication Failure (SSH_MSG_USERAUTH_FAILURE)

Authentication Request (SSH_MSG_USERAUTH_REQUEST)

Authentication Failure (SSH_MSG_USERAUTH_FAILURE)

Authentication Request (SSH_MSG_USERAUTH_REQUEST)

Authentication Failure (SSH_MSG_USERAUTH_SUCCESS)

• The user authentication protocol iterates through a list of mechanisms until either
authentication was successful or all mechanisms have failed.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 202 / 264

SSH Connection Protocol

Client Server

Channel Open (SSH_MSG_CHANNEL_OPEN)

Channel Open Confirmation (SSH_MSG_CHANNEL_OPEN_CONFIRMATION)

Channel Data (SSH_MSG_CHANNEL_DATA)

Channel Data (SSH_MSG_CHANNEL_DATA)

Channel Close (SSH_MSG_CHANNEL_CLOSE)

Channel Close (SSH_MSG_CHANNEL_CLOSE)

• The connection protocol has additional messages to handle control flow, error
messages (equivalent of stderr), and end-of-file indicators.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 203 / 264

OpenSSH Privilege Separation

• Privilege separation is a technique in which a program is divided into parts which
are limited to the specific privileges they require in order to perform a specific task.

• OpenSSH is using two processes: one running with special privileges and one
running under normal user privileges.

• The process with special privileges carries out all operations requiring special
permissions.

• The process with normal user privileges performs the bulk of the computation not
requiring special rights.

• Bugs in the code running with normal user privileges do not give special access
rights to an attacker.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 204 / 264

DNS Security (DNSSEC, DoT, DoH)

25 Pretty Good Privacy (PGP)

26 Transport Layer Security (TLS)

27 Secure Shell (SSH)

28 DNS Security (DNSSEC, DoT, DoH)

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 205 / 264

Part: Information Hiding and Privacy

29 Steganography and Watermarks

30 Covert Channels

31 Anonymization Terminology

32 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 206 / 264

Steganography and Watermarks

29 Steganography and Watermarks

30 Covert Channels

31 Anonymization Terminology

32 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 207 / 264

Information Hiding

Definition (information hiding)

Information hiding aims at concealing the very existence of some kind of information for
some specific purpose.

• Information hiding itself does not aim at protecting message content

• Encryption protects message content but by itself does not hide the existence of a
message

• Information hiding techniques are often used together with encryption in order to
both hide the existence of messages and to protect messages in case their existence
is uncovered

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 208 / 264

Steganography

Definition (steganography)

Steganography is the embedding of some information (hidden-text) within digital media
(cover-text) so that the resulting digital media (stego-text) looks unchanged
(imperceptible) to a human/machine.

• Information hiding explores the fact that there are often (almost) unused or
redundant bits in digital media that can be used to carry hidden digital information.

• The challenge is to identify (almost) unused or redundant bits and to encode
hidden digital information in them in such a way that the existence of hidden
information is difficult to observe.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 209 / 264

Steganography Workflow

cover−text

or

storage

cover−text encoder stego−text

decoderhidden−text

keys

hidden−text

communication

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 210 / 264

Types of Cover Media

• Information can be hidden in various cover media types:
• Image files
• Audio files
• Video files
• Text files
• Software (e.g., executable files, source code)
• Network traffic (e.g., covert channels)
• Storage devices (e.g., steganographic file systems)
• Events (e.g., timing covert channels, signaling covert channels)
• . . .

• Media types of large size usually make it easier to hide information.

• Robust steganographic methods may survive some typical modifications of
stego-texts (e.g., cropping or recoding of images).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 211 / 264

Watermarking

Definition (watermarking)

Watermarking is the embedding of some information (watermark) within digital media
(cover-text) so that the resulting digital media looks unchanged (imperceptible) to a
human/machine.

• Watermarking:
• The hidden information by itself is not important.
• The watermark says something about the cover-text.

• Steganography:
• The cover-text is not important, it only conveys the hidden information.
• The hidden-text is the valuable information, it is meaningful independent of

cover-text.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 212 / 264

Classification of Steganographic Algorithms

• Fragile versus robust:
• Fragile: Modifications of stego-text likely destroy hidden-text.
• Robust: Hidden-text is likely to survive modifications of the stego-text.

• Blind versus semi-blind versus non-blind:
• Blind requires the original cover-text for detection / extraction.
• Semi-blind needs some information from the embedding but not the whole

cover-text.
• Non-blind does not need any information for detection / extraction.

• Pure versus symmetric (key) versus asymmetric (public key):
• Pure algorithms need no key for detection / extraction.
• Secret key algorithms need a symmetric key for embedding and extraction.
• Public key algorithms needs a private key for embedding and a public key for

extraction.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 213 / 264

Example: LSB-based Image Steganography

• Idea:
• Some image formats encode a pixel using three 8-bit color values (red, green, blue).
• Changes in the least-significant bits (LSB) are difficult for humans to see.

• Approach:
• Use a key to select some least-significant bits of an image to embed hidden

information.
• Encode the information multiple times to achieve some robustness against noise.

• Problem:
• Existence of hidden information may be revealed if the statistical properties of

least-significant bits change.
• Fragile against noise such as compression, resizing, cropping, rotating or simply

additive white Gaussian noise.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 214 / 264

Example: DCT-based Image Steganography

• Idea:
• Some image formats (e.g., JPEG) use discrete cosine transforms (DCT) to encode

image data.
• The manipulation happens in the frequency domain instead of the spatial domain

and this reduces visual attacks against the JPEG image format.

• Approach:
• Use a key to select some DCT coefficients of an image to embed hidden information.
• Replace the least-significant bits of the selected discrete cosine transform

coefficients.

• Problem:
• Existence of hidden information may be revealed if the statistical properties of the

DCT coefficients are changed.
• This risk may be reduced by using an pseudo-random number generator to select

coefficients.
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 215 / 264

Covert Channels

29 Steganography and Watermarks

30 Covert Channels

31 Anonymization Terminology

32 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 216 / 264

Covert Channels

• Covert channels represent unforeseen communication methods that break security
policies (e.g., by bypassing firewalls).

• Network covert channels transfer information through networks in ways that hide
the fact that communication takes place (hidden information transfer).

• Covert channels embed information in
• header fields of protocol data units (protocol messages)
• the size of protocol data units
• the timing of protocol data units (e.g., inter-arrival times)

• We are not considering covert channels that are constructed by exchanging
steganographic objects (e.g., cat images with embedded hidden content) in
application messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 217 / 264

Covert Channel Patterns

P1 Size Modulation Pattern
The covert channel uses the size of a header field or of a protocol message to
encode hidden information.

P2 Sequence Pattern
The covert channel alters the sequence of header fields to encode hidden
information.

P3 Add Redundancy Pattern
The covert channel creates new space within a given header field or within a
message to carry hidden information.

P4 Message Corruption/Loss Pattern
The covert channel generates corrupted protocol messages that contain hidden
data or it actively utilizes packet loss to signal hidden information.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 218 / 264

Covert Channel Patterns

P5 Random Value Pattern
The covert channel embeds hidden data in a header field containing a “random”
value.

P6 Value Modulation Pattern
The covert channel selects one of several values a header field can contain to
encode a hidden message.

P7 Reserved/Unused Pattern
The covert channel encodes hidden data into a reserved or unused header field.

P8 Inter-arrival Time Pattern
The covert channel alters timing intervals between protocol messages (inter-arrival
times) to encode hidden data.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 219 / 264

Covert Channel Patterns

P9 Rate Pattern
The covert channel sender alters the data rate of a traffic flow from itself or a third
party to the covert channel receiver.

P10 Protocol Message Order Pattern
The covert channel encodes data using a synthetic protocol message order for a
given number of protocol messages flowing between covert sender and receiver.

P11 Re-Transmission Pattern
A covert channel re-transmits previously sent or received protocol messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 220 / 264

Anonymization Terminology

29 Steganography and Watermarks

30 Covert Channels

31 Anonymization Terminology

32 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 221 / 264

Communication Model

recipientssenders pseudonymspseudonyms communication network carrying messages

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 222 / 264

Anonymity

Definition (anonymity)

Anonymity of a subject from an attacker’s perspective means that the attacker cannot
sufficiently identify the subject within a set of subjects, the anonymity set.

• All other things being equal, anonymity is the stronger, the larger the respective
anonymity set is and the more evenly distributed the sending or receiving,
respectively, of the subjects within that set is.

• Robustness of anonymity characterizes how stable the quantity of anonymity is
against changes in the particular setting, e.g., a stronger attacker or different
probability distributions.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 223 / 264

Unlinkability and Linkability

Definition (unlinkability)

Unlinkability of two or more items of interest (IOIs) (e.g., subjects, messages, actions,
. . .) from an attacker’s perspective means that within the system, the attacker cannot
sufficiently distinguish whether these IOIs are related or not.

Definition (linkability)

Linkability of two or more items of interest (IOIs) (e.g., subjects, messages, actions,
. . .) from an attacker’s perspective means that within the system, the attacker can
sufficiently distinguish whether these IOIs are related or not.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 224 / 264

Undetectability and Unobservability

Definition (undetectability)

Undetectability of an item of interest (IOI) from an attacker’s perspective means that
the attacker cannot sufficiently distinguish whether it exists or not.

Definition (unobservability)

Unobservability of an item of interest (IOI) means

• undetectability of the IOI against all subjects uninvolved in it and

• anonymity of the subject(s) involved in the IOI even against the other subject(s)
involved in that IOI.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 225 / 264

Implications and Relationships

With respect to the same attacker, the following hold:

• unobservability ⇒ anonymity

• sender unobservability ⇒ sender anonymity

• recipient unobservability ⇒ recipient anonymity

• relationship unobservability ⇒ relationship anonymity

The following holds for relationships between a sender and a receiver:

• sender anonymity ⇒ relationship anonymity

• recipient anonymity ⇒ relationship anonymity

• sender unobservability ⇒ relationship unobservability

• recipient unobservability ⇒ relationship unobservability

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 226 / 264

Pseudonymity

Definition (pseudonym)

A pseudonym is an identifier of a subject other than one of the subject’s real names.
The subject, which the pseudonym refers to, is the holder of the pseudonym.

Definition (pseudonymity)

A subject is pseudonymous if a pseudonym is used as identifier instead of one of its real
names. Pseudonymity is the use of pseudonyms as identifiers.

• We can distinguish different kinds of pseudonyms, like person pseudonyms, role
pseudonyms, relationship pseudonyms, transaction pseudonyms,

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 227 / 264

Identifiability and Identity

Definition (identifiability)

Identifiability of a subject from an attacker’s perspective means that the attacker can
sufficiently identify the subject within a set of subjects, the identifiability set.

Definition (identity)

An identity is any subset of attribute values of an individual person that sufficiently
identifies this individual person within any set of persons. So usually there is no such
thing as “the identity”, but there are several identities.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 228 / 264

Identity Management

Definition (identity management)

Identity management means managing various partial identities (usually denoted by
pseudonyms) of an individual person, i.e., administration of identity attributes including
the development and choice of the partial identity and pseudonym to be (re-)used in a
specific context or role.

• A partial identity is a subset of attribute values of a complete identity, where a
complete identity is the union of all attribute values of all identities of this person.

• A pseudonym might be an identifier for a partial identity.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 229 / 264

Mixes and Onion Routing

29 Steganography and Watermarks

30 Covert Channels

31 Anonymization Terminology

32 Mixes and Onion Routing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 230 / 264

Mix Networks

Definition (mix network)

A mix network uses special proxies called mixes to send data from a source to a
destination. The mixes filter, collect, recode, and reorder messages in order to hide
conversations. Basic operations of a mix are:

1. Removal of duplicate messages (an attacker may inject duplicate message to infer
something about a mix).

2. Collection of messages in order to create an ideally large anonymity set.

3. Recoding of messages so that incoming and outgoing messages cannot be linked.

4. Reordering of messages so that order information cannot be used to link incoming
and outgoing messages.

5. Padding of messages so that message sizes do not reveal information to link
incoming and outgoing messages.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 231 / 264

Onion Routing

• A message m it sent from the source S to the destination T via an overlay network
consisting of the intermediate routers R1, R2, . . . , Rn, called a circuit.

• A message is cryptographically wrapped multiple times such that every onion router
Ri unwraps one layer and thereby learns to which router the message needs to be
forwarded next.

• To preserve the anonymity of the sender, no node in the circuit is able to tell
whether the node before it is the originator or another intermediary like itself.

• Likewise, no node in the circuit is able to tell how many other nodes are in the
circuit and only the final node, the ”exit node”, is able to determine its own
location in the chain.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 232 / 264

Tor

• Tor is an anonymization network operated by volunteers supporting the Tor project.

• Every Tor router has a long-term identity key and a short-term onion key.

• The identity key is used to sign TLS certificates and the onion key is used to
decrypt messages to setup circuits and ephemeral keys.

• TLS is used to protect communication between onion routers.

• Directory servers provide access to signed state information provided by Tor routers.

• Applications build circuits based on information provided by directory servers.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 233 / 264

Part: System Security

33 Authentication

34 Authorization

35 Auditing

36 Trusted Computing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 234 / 264

Authentication, Authorization, Auditing, Isolation

• Authentication
• Who is requesting an action?

• Authorization
• Is a principal allowed to execute an action on this object?

• Auditing
• Record evidence for decision being made in an audit-trail.

• Isolation
• Isolate system components from each other to create sandboxes.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 235 / 264

Lampson Model

A
u

d
it

in
g

Subject Guard Object

Audit Trail

Authentication Authorization

• This basic model works well for modeling static access control systems.

• Dynamic access control systems allowing dynamic changes to the access control
policy are difficult to model with this approach.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 236 / 264

Isolation

• Isolation is a fundamental technique to increase the robustness of computing
systems and to reduce their attack surface.

• Isolation can be achieved in many different layers of a computing system:
• Physical (e.g., preventing physical access to compute clouds)
• Hardware (e.g., memory management and protection units)
• Virtualization (e.g., virtual machines, containers)
• Operating System (e.g., processes, file systems)
• Network (e.g., virtual LANs, virtual private networks)
• Applications (e.g., transaction isolation in databases)

• Isolation should be a concern of every system design.

• Isolation also concerns the deployment of computing systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 237 / 264

Authentication

33 Authentication

34 Authorization

35 Auditing

36 Trusted Computing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 238 / 264

Authentication

Definition (authentication)

Authentication is the process of verifying a claim that a system entity or system
resource has a certain attribute value.

• An authentication process consists of two basic steps:

1. Identification step: Presenting the claimed attribute value (e.g., a user identifier) to
the authentication subsystem.

2. Verification step: Presenting or generating authentication information (e.g., a value
signed with a private key) that acts as evidence to prove the binding between the
attribute and that for which it is claimed.

• Security services frequently depend on authentication of the identity of users, but
authentication may involve any type of attribute that is recognized by a system.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 239 / 264

Authentication Factors

• Something you know (knowledge factors)
• Your password, first own music album, personal identification number, . . .

• Something you have (possession factors)
• Your mobile device, security token, software token, . . .

• Something you are (static biometrics)
• Your fingerprint, retina, face, . . .

• Something you do (dynamic biometrics)
• Your voice, signature, typing rhythm, . . .

• Multi-factor authentication uses multiple factors to authenticate a user.

• Two-factor authentication is increasingly used these days.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 240 / 264

Password Authentication

Definition (password authentication)

A password is a secret data value, usually a character string, that is presented to a
system by a user to authenticate the user’s identity.

• Never ever store passwords in cleartext on a server (or elsewhere).

• A common approach is to store H(s‖p) where H is a cryptographic hash function,
p is the password, and s is a random value (the salt).

• The salt ensures that multiple occurrences of the same password do not lead to the
repeating hash values.

• Storing encrypted passwords is not recommended since this often leads to situations
where applications can get access to passwords they should not have access to.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 241 / 264

Challenge-Response Authentication

Definition (challenge-response authentication)

Challenge-response authentication is an authentication process that verifies an identity
by requiring correct authentication information to be provided in response to a
challenge. In a computer system, the authentication information is usually a value that
is required to be computed in response to an unpredictable challenge value, but it might
be just a password.

• Password authentication can be seen as a special case of a challenge-response
authentication process.

• In some protocols the server sends a challenge to the client in the form of a
random value and the client responds with a cryptographic hash computed over the
random value and a password (that is shared with the server).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 242 / 264

One-Time Password Authentication

• Let Hn(m) denote the repeated application, n-times, of the function H to m.

• Initialization: Given a passphrase p and a salt s, computes k = Hn+1(s‖p) and the
authentication server remembers k and n.

• Challenge: The authentication server sends the name of the hash function H , the
salt s, and the current value of n to the user.

• Response: The user computes q = Hn(s‖p) and sends the value q back to the
server.

• Verification: The server computes H(q) = H(Hn(s‖p)) = Hn+1(s‖p) and checks
whether it matches k . If it matches, the server sets k = q and n is decremented. If
n becomes 0, a new initialization must be performed.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 243 / 264

Token Authentication

Definition (token authentication)

Token authentication verifies the claim of an identity by proving the possession of a
(hardware) token.

• Smart cards are credit-card sized devices containing one or more chips that perform
the functions of a computer’s central processor, memory, and input/output
interface.

• A smart token is a device that conforms to the definition of a smart card except
that rather than having the standard dimensions of a credit card, the token is
packaged in some other form, such as a military dog tag or a door key.

• Mobile devices are sometimes uses as a token in today’s multi-factor authentication
systems.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 244 / 264

Biometric Authentication

Definition (biometric authentication)

Biometric authentication is a method of generating authentication information for a
person by digitizing measurements of a physical or behavioral characteristic, such as a
fingerprint, hand shape, retina pattern, voiceprint, handwriting style, or face.

• Sensors that read biometric data must be designed such that they can detect fake
copies of biometric data.

• Fingerprint sensors, for example, try to detect blood flows in order to determine
whether the finger belongs to a living object.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 245 / 264

Authorization

33 Authentication

34 Authorization

35 Auditing

36 Trusted Computing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 246 / 264

Subjects, Objects, Rights

• Subjects (S): set of active objects
• processes, users, . . .

• Objects (O): set of protected entities
• files, directories, . . .
• memory, devices, sockets, . . .
• processes, memory, . . .

• Rights (R): set of operations a subject can perform on an object
• create, read, write, delete . . .
• execute . . .

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 247 / 264

Lampson’s Access Control Matrix

Definition (access control matrix)

An access control matrix M consists of subjects si ∈ S , which are row headings, and
objects oj ∈ O, which are column headings. The access rights ri ,j ∈ R∗ of subject si
when accessing object oj are given by the value in the cell ri ,j = M[si , oj].

• Another way to look at access control rights is that the access rights r ∈ R∗ are
defined by a function M : (S × O)→ R∗.

• Since the access control matrix can be huge, it is necessary to find ways to express
it in a format that is lowering the cost for maintaining it.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 248 / 264

Access Control Lists

Definition (access control list)

An access control list represents a column of the access control matrix. Given a set of
subjects S and a set of rights R , an access control list of an object o ∈ O is a set of
tuples of S × R∗.

• Example: The inode of a traditional Unix file system (the object) stores the
information whether a user or a group or all users (the subject(s)) have
read/write/execute permissions (the rights).

• Example: A database system stores for each database (the object) information
about which operations (the rights) users (the subjects) can perform on the
database.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 249 / 264

Capabilities

Definition (capabilities)

A capability represents a row of the access control matrix. Given a set of objects o and
a set of rights R , a capability of a subject s is a set of tuples of O × R∗.

• Example: An open Unix file descriptor can be seen as a capability. Once opened,
the open file can be used regardless whether the file is deleted or whether access
rights of the file are changed. The capability (the open file descriptor) can be
transferred to child processes. (Note that passing capabilities to child processes is
not meaningful for all capabilities.)

• Example: The Linux system has pre-defined capabilities like CAP SYS TIME or
CAP CHOWN that partition the rights of the root user into more manageable smaller
capabilities.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 250 / 264

Access Control Lists versus Capabilities

• Both are theoretically equivalent (since both at the end can represent the same
access control matrix).

• Capabilities tend to be more efficient if the common question is “Given a subject,
what objects can it access and how?”.

• Access control lists tend to be more efficient if the common question is “Given an
object, what subjects can access it and how?”.

• Access control lists tend to be more popular because they are more efficient when
an authorization decision needs to be made.

• Systems often use a mixture of both approaches.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 251 / 264

Discretionary, Mandatory, Role-based Access Control

• Discretionary Access Control (DAC)
• Subjects with certain permissions (e.g., ownership of an object) can define access

control rules to allow or deny (other) subjects access to an object.
• It is at the subject’s discretion to decide which rights to give to other subjects

concerning certain objects.

• Mandatory Access Control (MAC)
• System mechanisms control access to objects and an individual subject cannot alter

the access rights.
• What is allowed is mandated by the security policy implemented by the security

administrator of a system.

• Role-based Access Control (RAC)
• Subjects are first mapped to a set of roles that they have.
• Mandatory access control rules are defined for roles instead of subjects.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 252 / 264

API Authorization (OAuth 2.0)

Resource Owner User Agent Client Authorization Server Resource Server

Authorization Request

Authorization Request

Authorization Dialogue

Authorization Dialogue

Authorization Dialogue

Authorization Dialogue

Authorization Grant

Authorization Grant

Authorization Grant

Access Token

Access Token

Protected Resource

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 253 / 264

Auditing

33 Authentication

34 Authorization

35 Auditing

36 Trusted Computing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 254 / 264

Auditing

Definition (auditing)

Auditing is the process of collecting information about security-related events in an
audit log, also called an audit trail.

• Audit logs are necessary for performing forensic investigation and for identifying
and tracking ongoing attacks.

• Examples of security-related events that are typically logged are (failed) login
attempts, failed attempts to obtain additional privileges, information about who
accesses a system when, unusual failures of security protocols etc.

• Unix systems use logging daemons to receive, filter, forward, and store system logs
originating from the kernel and background daemons.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 255 / 264

Audit Log Processing

• Audit logs can become very large and a common approach is to rotate logs
periodically (say every day) and to keep only a history of the last N days or weeks.

• Audit logs often consist of semi-structured information, which makes automated
processing of logged information a bit challenging.

• Audit logs often contain a lot of noise (information about events that are not
security-related in a given deployment or context) and finding relevant information
often becomes a search for an unknown needle in a haystack.

• There are tools that automatically filter logged messages and generate reports
summarizing events that were not classified as expected and harmless.

• Maintaining good filter rules takes effort and obviously filter rules must be
maintained in such a way that an attacker cannot modify them.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 256 / 264

Trusted Computing

33 Authentication

34 Authorization

35 Auditing

36 Trusted Computing

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 257 / 264

Trusted Computing Base

Definition (trusted computing base)

The trusted computing base of a computer system is the set of hard- and software
components that are critical to achieve the systems’ security properties.

• The components of a trusted computing base are designed such that when other
parts of a system are attacked, the device will not misbehave.

• Trusted computing bases should be small in order to be able to verify their
correctness.

• Trusted computing bases should be tamper-resistant.

• Trusted computing bases typically involve special hardware components.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 258 / 264

Trusted Computing Security Goals

• Isolation: Separation of essential security critical functions and associated data
(keys) from the general computing system.

• Attestation: Proving to an authorized party that a specific component is in a
certain state.

• Sealing : Wrapping of code and data such that it can only be unwrapped and used
under certain circumstances.

• Code Confidentiality : Ensures that sensitive code and static data cannot be
obtained by untrusted hardware or software.

• Side-Channel Resistance: Ensures that untrusted components are not able to
deduce information about the internal state of a trusted computing component.

• Memory Protection: Protects the integrity and authenticity of data sent over
system buses or stored in (external) memory from physical attacks.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 259 / 264

Trusted Platform Module (TPM)

• A Trusted Platform Module (TPM) is a dedicated micro-controller designed to
secure hardware through integrated cryptographic operations and key storage.

• The TPM 1.2 specification was published in 2011:
• Co-processor capable of generating good random numbers, storing keys, performing

cryptographic operations, and providing the basis for attestation.
• Limited protection against physical attacks.

• The TPM 2.0 specification was published in 2014.
• Support of a larger set of cryptographic algorithms and more storage space for

attestation purposes.

• The TPM specifications have been created by the Trusted Computing Group (a
consortium of vendors with large influence of Microsoft on TPM 2.0).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 260 / 264

Trusted Execution Environment (TEE)

Definition (trusted and rich execution environment)

A trusted execution environment (TEE) is a secure area of a processor providing
isolated execution, integrity of trusted applications, as well as confidentiality of trusted
application resources. A rich execution environment (REE) is the non-secure area of a
processor where an untrusted operating system executes.

• REE resources are accessible from the TEE

• TEE resources are accessible from the REE only if explicitly allowed.

• The TEE specifications have been created by the GlobalPlatform (another industry
consortium).

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 261 / 264

TrustZone Cortex-A (ARM)

• The ARM processor architecture has an internal communication interface called the
Advanced eXtensible Interface (AXI).

• ARM’s TrustZone extends the AXI bus with a Non-Secure (NS) bit.

• The NS bit conveys whether the processor works in secure mode or in normal mode.

• The processor is normally executing in either secure or normal mode.

• To perform a context switch (between modes), the processor transits through a
monitor mode.

• The monitor mode saves the state of the current world and restores the state of
the world being switched to.

• Interrupts may trap the processor into monitor mode if the interrupt needs to be
handled in a different mode.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 262 / 264

TrustZone Cortex-M (ARM)

• The Cortex-M design follows the Cortex-A design by having the processor execute
in either secure or normal mode.

• Instructions read from secure memory will be executed in the secure mode of the
processor and instructions read from non-secure memory will be executed in normal
mode.

• Cortex-M replaces the monitor mode of the Cortex-A design with a faster
mechanism to call secure code via multiple secure function entry points (supported
by the machine instructions SG, BXNS, BLXNS).

• The Cortex-M design supports multiple separate call stacks and the memory space
is separated into secure and non-secure sections.

• Interrupts can be configured to be handled in secure or non-secure mode.

Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 263 / 264

Security Guard Extension (SGX, Intel)

• SGX places the protected parts of an application in so called enclaves that can be
seen as a protected module within the address space of a user space process.
• SGX enabled CPUs ensure that non-enclaved code, including the operating system

and potentially the hypervisor, cannot access enclave pages.
• A memory region called the Processor Reserved Memory (PRM) contains the

Enclave Page Cache (EPC) and is protected by the CPU against non-enclave
accesses.
• The content of enclaves is loaded when enclaves are created and measurements are

taken to ensure that the content loaded is correct.
• The measurement result obtained during enclave creation may be used for (remote)

attestation purposes.
• Entering an enclave is realized like a system call and supported by special machine

instructions (EENTER, EEXIT, ERESUME).
Jürgen Schönwälder (Jacobs University Bremen) Secure and Dependable Systems ’2021 April 4, 2022 264 / 264

	Administrivia
	Objectives and Assessment
	Rules of the Game
	Resources

	Introduction
	Motivation
	Recent Computing Disasters
	Dependability Concepts and Terminology
	Dependability Metrics

	Software Engineering Aspects
	General Aspects
	Software Verification
	Software Testing
	Software Security by Design

	Software Vulnerabilities and Exploits
	Terminology
	Control Flow Attacks
	Code Injection Attacks

	Network Vulnerabilities
	Internet Architecture Review
	Data Plane Attacks
	Control Plane Attacks
	Reconnaissance and Denial of Service

	Cryptography
	Cryptography Terminology
	Symmetric Encryption Algorithms and Block Ciphers
	Asymmetric Encryption Algorithms
	Cryptographic Hash Functions
	Digital Signatures and Certificates
	Key Exchange Schemes

	Secure Communication Protocols
	Pretty Good Privacy (PGP)
	Transport Layer Security (TLS)
	Secure Shell (SSH)
	DNS Security (DNSSEC, DoT, DoH)

	Information Hiding and Privacy
	Steganography and Watermarks
	Covert Channels
	Anonymization Terminology
	Mixes and Onion Routing

	System Security
	Authentication
	Authorization
	Auditing
	Trusted Computing

