
Secure and Dependable Systems Module: CO-566
Jacobs University Bremen Date: 2022-02-17
Dr. Jürgen Schönwälder Due: 2022-02-24

SADS 2022 Problem Sheet #2

Problem 2.1: test coverages (1+1+1+1+1 = 5 points)

The following Rust program calculates the greatest common divisor of two integers.

fn gcd(mut a: i64, mut b: i64) -> i64 {

while (a > 0) && (b > 0) {

if a > b {

a -= b;

} else {

b -= a;

}

}

a + b

}

fn main() {

let args: Vec<String> = std::env::args().collect();

if args.len() != 3 {

panic!("wrong number of arguments")

}

let a: i64 = args[1].parse().unwrap();

let b: i64 = args[2].parse().unwrap();

println!("gcd({}, {}) = {}", a, b, gcd(a, b));

}

Lets assume the program has been compiled into the executable file gcd. Your task is to write down
a minimal number of calls of the program (shell commands) that achieve different code coverages.

a) Which calls are necessary to achieve function coverage?

b) Which calls are necessary to achieve statement coverage?

c) Which calls are necessary to achieve branch coverage?

d) Which calls are necessary to achieve path coverage?

e) Which calls are necessary to achieve condition coverage?

Problem 2.2: clang libfuzzer (3+2 = 5 points)

The clang compiler support a fuzzying API, which makes it very easy to fuzz C functions. Below
is a simple example:

#include <stdint.h>

#include <stddef.h>

static int memcmp(void *s1, const void *s2, size_t n)

{

unsigned char *a = (unsigned char *) s1;

unsigned char *b = (unsigned char *) s2;



for (int i = 0; i < n; i++) {

if (a[i] < b[i]) {

return -1;

}

if (a[i] > b[i]) {

return 1;

}

}

return 0;

}

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

{

char *msg = "FUZZ";

(void) memcmp(msg, data, size);

return 0;

}

By compiling the code with -fsanitize=fuzzer, you obtain an executable that will feed fuzzed
inputs to the function LLVMFuzzerTestOneInput(), from where you can call any function you want
to test. It is usually a good idea to enable additional clang sanitizers by compiling the code with
-fsanitize=fuzzer,address,undefined.

a) Fuzz the example shown above. What is the test case found by the fuzzer that causes the
implementation of memcmp() to fail? What is the problem here? Explain.

b) Take a function of medium complexity that you wrote in the past and which is processing
strings. (In the operating systems course you likely wrote a function (as part of the word
guessing game) that selects a random word in a text string, which is then replaced by un-
derscore characters and the word is returned as an allocated copy, char* hide word(char

*text).) Implement a suitable fuzzying wrapper and report which bugs were found (if any).


