SADS 2022 Problem Sheet \#6

Problem 6.1: feistel network

$$
(3+3=6 \text { points })
$$

Consider a Feistel Network using 8-bit block and three rounds. The function F adds the round key to a bit block (addition with overflows discarded). Carry out the following calculations on paper.
a) Given the 8-bit cleartext block $m=01100001$ and the key $k=\left(k_{0}, k_{1}, k_{2}\right)=(9,5,3)$, calculate the 8-bit ciphertext block.
b) Given the 8-bit ciphertext from a) and the same key k, calculate the 8-bit cleartext.

Problem 6.2: substitution-permutation network
We define a substitution-permutation network implementing an 8-bit block cipher with keys of a length of 32 bits. We call this cipher sads crypt, or short scrypt.

- The key step takes 8 bits from the key and performs a bitwise exclusive or with current 8 -bit value.
- The substitution step uses 4-bit S-boxes applied to the lower and upper 4 bits of an 8-bit word. The substitution $S:\{0,1\}^{4} \rightarrow\{0,1\}^{4}$ is given by $x \mapsto((x+1) \cdot 7) \bmod (17-1)$. This is a bijection of $\{0,1\}^{4}$, where 4 -bit chunks are seen as natural numbers via their binary encoding.
- The permutation step uses an 8-bit P-box $P:\{0,1\}^{8} \rightarrow\{0,1\}^{8}$, which does a cyclic 2-bit left-shift of its argument.

The substitution-permutation network uses the following rounds:

- Round 0: Key step with the first (most significant) 8 bits of the key.
- Round 1: Substitution step followed by a permutation step followed by a key step with the next 8 bits of the key.
-Round 2: Substitution step followed by a permutation step followed by a key step with the next 8 bits of the key.
- Round 3: Substitution step followed by a key step with the last (least significant) 8 bits of the key.
a) Complete the file scrypt.rs by implementing the missing functions.

```
pub fn enc(m: u8, k: u32) -> u8 {
    todo!();
}
pub fn dec(c: u8, k: u32) -> u8 {
    todo!();
}
pub fn enc_ecb(m: &mut [u8], k: u32) {
    todo!();
}
```

```
pub fn dec_ecb(c: &mut [u8], k: u32) {
    todo!();
}
pub fn enc_cbc(m: &mut [u8], k: u32, iv: u8) {
    todo!();
}
pub fn dec_cbc(c: &mut [u8], k: u32, iv: u8) {
    todo!();
}
```

b) Encrypt the cleartext "hello world" (0x68656c6c6f20776f726c64) using electronic codebook mode with the key 0x98267351. Encrypt the same cleartext using cipher block chaining mode with the key 0×98267351 and the initialization vector 0×42.

