
Secure and Dependable Systems Module: CO-566
Constructor University Date: 2023-02-16
Dr. Jürgen Schönwälder Due: 2023-02-23

Problem Sheet #2

Problem 2.1: test coverages (1+1+1+1+1 = 5 points)

The following Rust function calculates the greatest common divisor of two integers.

pub fn gcd(mut a: i64, mut b: i64) -> i64 {

while (a > 0) && (b > 0) {

if a > b {

a -= b;

} else {

b -= a;

}

}

a + b

}

Here is a main() program exposing this function to the command line. The main() function returns
a result in order to deliver errors (note how the ? operator is used do propagate parsing errors).

use gcd::gcd;

use std::error::Error;

fn main() -> Result<(), Box<dyn Error>> {

let args: Vec<String> = std::env::args().collect();

if args.len() > 1 {

let mut g: i64 = args[1].parse()?;

for arg in args.iter().skip(2) {

let y: i64 = arg.parse()?;

g = gcd(g, y);

}

println!("{g}");

}

Ok(())

}

Lets assume the program has been compiled into the executable gcd. Your task is to write down a
minimal number of shell commands that achieve different code coverages.

a) Which commands are necessary to achieve function coverage? Explain.

b) Which commands are necessary to achieve statement coverage? Explain.

c) Which commands are necessary to achieve branch coverage? Explain.

d) Which commands are necessary to achieve path coverage? Explain.

e) Which commands are necessary to achieve condition coverage? Explain.

Problem 2.2: clang libfuzzer (3+2 = 5 points)

The clang compiler support a fuzzying API, which makes it very easy to fuzz C functions. Below
is a simple example:



#include <stdint.h>

#include <stddef.h>

static int memcmp(void *s1, const void *s2, size_t n)

{

unsigned char *a = (unsigned char *) s1;

unsigned char *b = (unsigned char *) s2;

for (int i = 0; i < n; i++) {

if (a[i] < b[i]) {

return -1;

}

if (a[i] > b[i]) {

return 1;

}

}

return 0;

}

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

{

char *msg = "FUZZ";

(void) memcmp(msg, data, size);

return 0;

}

By compiling the code with -fsanitize=fuzzer, you obtain an executable that will feed fuzzed
inputs to the function LLVMFuzzerTestOneInput(), from where you can call any function you want
to test. It is usually a good idea to enable additional clang sanitizers by compiling the code with
-fsanitize=fuzzer,address,undefined.

a) Fuzz the example shown above. What is the test case found by the fuzzer that causes the
implementation of memcmp() to fail? What is the problem here? Explain.

b) Take a function of medium complexity that you wrote in the past and which is processing
strings. (In the operating systems course you likely wrote a function (as part of the word
guessing game) that selects a random word in a text string, which is then replaced by un-
derscore characters and the word is returned as an allocated copy, char* hide word(char

*text).) Implement a suitable fuzzying wrapper and report which bugs were found (if any).


