Problem Sheet \#8

Problem 8.1: block encryption modes of operation
Consider a simple symmetric block cipher with a block size and a key size of 4 bits. The encryption function $E(k, m)$ is defined as

$$
E(k, m)=s(k \oplus m)
$$

where k is the 4-bit key, m is a 4-bit cleartext block, \oplus is the bitwise exclusive-or operation and the function s is a bijective substitution defined via the following table:

m	0000	0001	0010	0011	0100	0101	0110	0111
$s(m)$	0010	1010	0110	1100	1001	0000	1110	0101
m	1000	1001	1010	1011	1100	1101	1110	1111
$s(m)$	0001	1000	0100	1111	0111	1101	0011	1011

Hint: In your solution, you can write + instead of \oplus to refer to the exclusive-or operation.
a) Define the decryption function $D(k, c)$ and show that the decryption function is correct.
b) Encrypt the message 101000110101 with the key $k=1010$ using the Electronic Code Book (ECB) mode. Write the ciphertext in space-separated 4-bit blocks.
c) Encrypt the message 101000110101 with the key $k=1010$ using the Cipher Block Chaining (CBC) mode using the initialization vector $I V=1001$. Write the ciphertext in spaceseparated 4-bit blocks.
d) Encrypt the message 101000110101 with the key $k=1010$ using the Output Feedback Mode (OFB) using the initialization vector $I V=1001$. Write the ciphertext in space-separated 4-bit blocks.
e) Encrypt the message 101000110101 with the key $k=1010$ using the Counter Mode (CTR) using the two bit nonce $N=11$ (in binary) and a two bit counter. Write the ciphertext in space-separated 4-bit blocks.

