Problem Sheet \#1

Problem 1.1: system reliability

Consider a computing system with the following component structure:

a) Assuming that failures are independent, derive a formula for the reliability of the system. You can write down the formula in either plain math or as function definitions in Haskell (using Haskell as a calculator here may be convenient).
b) Assuming all components have the same reliability, generate a plot showing the system reliability as a function of the component reliability. At which point does the system reliability become better than the component reliablity?
c) Assume all components have a reliability of 0.8 . You have the financial resources to replace one component with a component that has a reliability of 0.95 . Which component do you replace to maximize the system reliability? What is the new system reliability you can achieve and what is the improvement?

Problem 1.2: k out of n systems
Let $R_{i}(t)$ denote the probability that component i works at time t and assume that component failures are independent. A serial system requires all n components to work and we know that the reliability of a serial system is given by

$$
R_{s}(t)=\prod_{i} R_{i}(t) .
$$

A parallel system requires that at least one out of n components works and we know that the reliability of a parallel system is given by

$$
R_{p}(t)=1-\prod_{i}\left(1-R_{i}(t)\right)
$$

The serial and the parallel systems can be seen as special cases of a general k out of n system where at least k components have to work in order for the overall system to work (a serial system is the special case where $k=n$ and a parallel system is the special case where $k=1$).
a) Derive a general formula to calculate the reliability of a k out of n system.
b) Produce a formula for the special case where all components have the same reliability p.
c) Calculate how the probability of a system with $n=5$ components changes if at least $k \in$ $\{1, \ldots, 5\}$ components need to function. Assume that all components have a reliability of 80% (using Haskell as a calculator here may be convenient).

