
Secure and Dependable Systems Module: CO-566
Constructor University Date: 2024-02-19
Dr. Jürgen Schönwälder Due: 2024-02-26

Problem Sheet #2

Problem 2.1: test coverages (1+1+1+1+1 = 5 points)

The following Rust function calculates the Levenshtein distance between two strings, which is
the minimum number of single-character edits (insertions, deletions or substitutions) required to
change one string into the other.

use std::cmp::min;

/// Calculates the Levenshtein distance between two strings.

///

/// # Arguments

///

/// * 'str1' - The first string

/// * 'str2' - The second string

///

/// # Examples

/// ```

/// let n = lved::lved::lved("hello", "world");

/// assert_eq!(n, 4);

/// ```

///

/// For more details, see the Wikipedia article:

/// https://en.wikipedia.org/wiki/Levenshtein_distance

pub fn lved(str1: &str, str2: &str) -> usize {

let s1 = str1.chars().collect::<Vec<_>>();

let s2 = str2.chars().collect::<Vec<_>>();

let s1_len = s1.len() + 1;

let s2_len = s2.len() + 1;

let mut matrix = vec![vec![0; s1_len]; s2_len];

for i in 1..s1_len { matrix[0][i] = i; }

for j in 1..s2_len { matrix[j][0] = j; }

for j in 1..s2_len {

for i in 1..s1_len {

matrix[j][i] = if s1[i-1] == s2[j-1] {

matrix[j-1][i-1]

} else {

1 + min(min(matrix[j][i-1], matrix[j-1][i]), matrix[j-1][i-1])

};

}

}

matrix[s2_len-1][s1_len-1]

}

Your task is to define minimal test cases by adding tests (using the assert_eq!() macro) to the
following test file.



#[cfg(test)]

mod tests {

use crate::lved::lved;

#[test]

fn lved_func_coverage_tests() {

}

#[test]

fn lved_stmt_coverage_tests() {

}

#[test]

fn lved_branch_coverage_tests() {

}

#[test]

fn lved_condition_coverage_tests() {

}

#[test]

fn lved_boundary_interior_path_coverage_tests() {

}

}

a) Which tests are necessary to achieve function coverage? Explain.

b) Which tests are necessary to achieve statement coverage? Explain.

c) Which tests are necessary to achieve branch coverage? Explain.

d) Which tests are necessary to achieve condition coverage? Explain.

e) Which tests are necessary to achieve boundary interior path coverage? Explain.

Problem 2.2: clang libfuzzer (3+2 = 5 points)

The clang compiler support a fuzzying API, which makes it very easy to fuzz C functions. Below
is a simple example:

#include <stdint.h>

#include <stddef.h>

static int memcmp(void *s1, const void *s2, size_t n)

{

unsigned char *a = (unsigned char *) s1;

unsigned char *b = (unsigned char *) s2;

for (int i = 0; i < n; i++) {

if (a[i] < b[i]) {

return -1;

}



if (a[i] > b[i]) {

return 1;

}

}

return 0;

}

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

{

char *msg = "FUZZ";

(void) memcmp(msg, data, size);

return 0;

}

By compiling the code with -fsanitize=fuzzer, you obtain an executable that will feed fuzzed
inputs to the function LLVMFuzzerTestOneInput(), from where you can call any function you want
to test. It is usually a good idea to enable additional clang sanitizers by compiling the code with
-fsanitize=fuzzer,address,undefined.

a) Fuzz the example shown above. What is the test case found by the fuzzer that causes the
implementation of memcmp() to fail? What is the problem here? Explain.

b) Take a function of medium complexity that you wrote in the past and which is processing
strings. (In the operating systems course you likely wrote a function (as part of the word
guessing game) that selects a random word in a text string, which is then replaced by un-
derscore characters and the word is returned as an allocated copy, char* hide word(char

*text).) Implement a suitable fuzzying wrapper and report which bugs were found (if any).


