Secure and Dependable Systems Constructor University Dr. Jürgen Schönwälder Module: CO-566 Date: 2024-04-01 **Due: 2024-04-08**

Problem Sheet #7

Problem 7.1: block encryption modes of operation

(2+2+2+2+2 = 10 points)

Consider a simple symmetric block cipher with a block size and a key size of 4 bits. The encryption function E(k,m) is defined as

$$E(k,m) = s(k \oplus m)$$

where k is the 4-bit key, m is a 4-bit cleartext block, \oplus is the bitwise exclusive-or operation and the function s is a bijective substitution defined via the following table:

$m \atop s(m)$	0000	0001	0010	0011	0100	0101	0110	0111
	0010	1010	0110	1100	1001	0000	1110	0101
${m \atop {s(m)}}$	1000	1001	1010	1011	1100	1101	1110	1111
	0001	1000	0100	1111	0111	1101	0011	1011

Hint: In your solution, you can write + instead of \oplus to refer to the exclusive-or operation.

- a) Define the decryption function D(k, c) and show that the decryption function is correct.
- b) Encrypt the message $1010\ 0011\ 0101$ with the key k = 1010 using the Electronic Code Book (ECB) mode. Write the ciphertext in space-separated 4-bit blocks.
- c) Encrypt the message $1010\ 0011\ 0101$ with the key k = 1010 using the Cipher Block Chaining (CBC) mode using the initialization vector IV = 1001. Write the ciphertext in space-separated 4-bit blocks.
- d) Encrypt the message $1010\ 0011\ 0101$ with the key k = 1010 using the Output Feedback Mode (OFB) using the initialization vector IV = 1001. Write the ciphertext in space-separated 4-bit blocks.
- e) Encrypt the message $1010\ 0011\ 0101$ with the key k = 1010 using the Counter Mode (CTR) using the two bit nonce N = 11 (in binary) and a two bit counter. Write the ciphertext in space-separated 4-bit blocks.