Problem Sheet \#9

Problem 9.1: points of an elliptic curve and orders of cyclic subgroups
Consider the elliptic curve $E\left(Z_{7}\right)=\left\{(x, y) \in Z_{7} \times Z_{7} \mid y^{2}=x^{3}+x+2\right\}$.
a) Determine the set of points of the elliptic curve $E\left(Z_{7}\right)$.
b) For each point $P \in E\left(Z_{7}\right)$, which is not infinity, determine its cyclic subgroup C_{P} and the order of the subgroup. The cyclic subgroup C_{P} of point P is obtained by computing the set $C_{P}=\{n P \mid n \geq 0\}$. The order of C_{P}, written as $\left|C_{P}\right|$, is the number of elements of C_{P}.

Problem 9.2: elliptic curve diffie hellman key exchange
Alice and Bob execute a Diffie-Hellman key exchange. They agree on using the point $P=(30,10)$ on the elliptic curve $E\left(Z_{191}\right)=\left\{(x, y) \in Z_{191} \times Z_{191} \mid y^{2}=x^{3}+x+1\right\}$.
a) Alice randomly chooses $a=8$. Which point does Alice send to Bob?
b) Bob randomly chooses $b=11$. Which point does Bob send to Alice?
c) What is the shared secrect that Alice and Bob calculate?

Problem 9.3: elliptic curve digital signatures
Let $E\left(Z_{p}\right)$ be an elliptic curve and $G \in E\left(Z_{p}\right)$ a point on the curve defining a group over $E\left(Z_{p}\right)$ with the order n. The sender chooses a private key $k \in Z_{p}$ and determines the corresponding public key $K=k \cdot G$. The algorithm to create signatures works as follows:

S1 Using the hash function H, create a hash $h=H(m)$ of the document m to be signed.
S2 Select a fresh random number e in the range $[1, n-1]$ (or instead derive e from a hash calculated over h and k).

S3 Calculate $P=e \cdot G$ and then let $r=P . x$ where $P . x$ refers to the x-coordinate of the point P. If $r=0$, repeat with a different random number e.

S4 Calculate $s=e^{-1} \cdot(h+r \cdot k)(\bmod n)$ where e^{-1} is the modular inverse of e, such that $e \cdot e^{-1} \equiv 1(\bmod n)$. If $s=0$, repeat with a different random number e.

S5 The signature of m is the tuple (r, s).

The algorithm to verify signatures works as follows:

V1 Using the hash function H, create a hash $h^{\prime}=H\left(m^{\prime}\right)$ of the received document m^{\prime}.
V2 Calculate the modular inverse s^{-1} of s , such that $s \cdot s^{-1} \equiv 1(\bmod n)$.
V3 Calculate $P^{\prime}=\left(h^{\prime} \cdot s^{-1}\right) \cdot G+\left(r \cdot s^{-1}\right) \cdot K$ and then let $r^{\prime}=P^{\prime} \cdot x$.
V4 Test whether $r=r^{\prime}$ holds.

Alice signs a message she is sending to Bob. Alice and Bob agree on using the elliptic curve $E\left(Z_{193}\right)=\left\{(x, y) \in Z_{193} \times Z_{193} \mid y^{2}=x^{3}+x+1\right\}$ and the point $G=(28,65)$. The order of the subgroup is $n=67$.
a) Alice chooses the private key $k=37$. Calculate the corresponding public key K.
b) Alice picks the fresh random value $e=21$. Calculate P and r.
c) The hash of the document m is the number $h=123$. Calculate the signature (r, s) that Alice is going to send with the document m to Bob.
d) Bob obtains the document m^{\prime} the signature (r, s) and he calculates the same hash number $h^{\prime}=123$. Show how Bob calculates the value of r^{\prime} and determine whether Bob accepts the signature.

