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February 5, 2026

Abstract

This memo focuses on system level security aspects of computing systems. The module starts
with investigating attacks on the microarchitecture of computing systems, such as attacks to gain in-
formation from side channels targeting caches. It then introduces trusted execution environments that
use hardware isolation mechanisms to provide protected storage for keys and to bootstrap the integrity
of bootloaders and the loaded operating systems. Students learn about the different levels of isolation
that can be achieved using various types of hypervisors or sandboxing mechanisms. Techniques that
can be used to protect a system against misbehaving code and malware are introduced. Students
will gain knowledge how protected data storage components can be provided at the system level and
how systems can offer support for collections of (distributed) authentication mechanisms. Finally, the
module will discusses how authorization mechanisms are realized in the different system software
components and how they can be used to define effective security policies.
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Part I

Introduction

This part introduces some fundamental concepts and it establishes a common terminology. After intro-
ducing a layered model of a computing system, we introduce concepts such as security policies, threat
models, and security mechanisms. Finally, we touch on ethical aspects of performing work on system
security.

By the end of this part, students should be able to

• outline the layers of a layered model of a computing system;

• describe security requirements of common system components;

• explain the relevance of threat models and provide examples;

• illustrate hardware and software security mechanisms;

• outline ethical principles and define the concept of ethical hacking;

• execute responsible disclosures.
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Fundamental Concepts

1 Fundamental Concepts

2 Ethical Considerations
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Layered Model of a Computing System
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Our focus is on a single computer system and a rough model is to think of it as a layered system.
Layering is a common strategy to deal with complexity and hence software developers and system
designers focus typically on a single layer or a few layers. Adversaries trying to find ways to attack a
computer system, however, do not have to think in these layers. In fact, security vulnerabilities and their
exploits often cross layer boundaries. This is why computer security specialists have to have a broad
understanding how complex software systems are executed.

1. We use the von Neuman computer architecture as the lowest level, which distinguishes central
processing units, I/O devices, and main memory. A key characteristic of the von Neuman archi-
tecture is that memory holds both data and instructions.

2. A central processing unit is characterized by its instruction set architecture, which defines the
CPU’s instruction set and the interaction with other system components.

3. An instruction set architecture is implemented by a specific micro-architecture. Different micro-
architectures may implement the same instruction set architecture.

4. A hypervisor is software creating and running virtual machines. Hypervisors are commonly used
in server and cloud computing infrastructures but they may be absent on devices that only serve
a specific purpose.

5. Operating system kernels take control of hardware components and provides programmers with
suitable abstractions such as processes, file systems, communication primitives.

6. The system call interface defines how application programs and system services can use the
services provided by the operating system kernel.

7. System libraries and services provide common services that are essential for writing software, for
deploying software, and for operating a computing system.

8. Third-party libraries and services provide common services that are essential for writing and de-
ploying applications and services.

9. Applications and services provide the functionality that users or other systems use, i.e., they are
the primary reason justifying the existance of the computing system.
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Security Requirements

Definition (security requirements)

The security requirements of an information system are all requirements of an
information system ensuring confidentiality, integrity, and availability of information
being processed, stored, or transmitted.

• Security requirements may originate from laws, directives, policies, standards,
regulations, procedures, or mission/business cases.

• It is important to capture security requirements in addition to functional
requirements during a system design process.
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It is important to be conservative when you define security requirements. One danger is that security
policies of different systems can interact in subtle ways and these interactions may be exploited by
adversaries to their advantage. For example, if a system allows to reset security credentials, then the
way this is realized may be exploited (see below for an interesting story documented in 2012).

Further online information:

• Web: How Apple and Amazon Security Flaws Led to My Epic Hacking
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Threat Models

Definition (threat model)

A threat model defines what an adversary can be expected to do.

• A system can only be secure against a given threat model.

• Typical aspects to consider:

- Has the adversary physical access to a system?
- Has the adversary an account on a system?
- Has the adversary the capability to install software on a system?

• Do not confuse this term with threat modeling, which is the process of modeling
potential threats of a system.
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It is important to make very few assumptions. Things to consider:

• Do not assume that users behave sensibly.

• Do not assume that programmers behave sensibly.

• Do not assume that system administrators behave sensibly.

• Do not assume that software will have a limited lifetime.

• Do not assume that humans can distinguish valid from invalid information.

• Expect that third-party systems providing security services can fail to do so.

• Expect that physical access protections may be circumvented.

• Expect that adversaries are both outside and inside.

• . . .

Nevertheless, it is necessary to make assumptions and to trust certain hardware and software compo-
nents in order to have a viable trust model to work with. But note that for modern software, it is almost
impossible to verify whether it can be trusted. Please read Ken Thompson’s reflections on trusting trust
[1].
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Security Mechanisms

Definition (security mechanism)

A security mechanism is a method, tool, or procedure for enforcing a security policy.

• Given a security policy (the security requirements) and a set of concrete security
mechanisms, it should be possible to reason whether the system can be secured
given a certain threat model.

• Fewer sufficiently flexible security mechanisms are often preferred over many
complex security mechanisms that may interact in ways that are difficult to analyze.
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Security mechanisms can be provided in both hardware and software. Here are some examples for
hardware mechanisms:

• Memory management units provide memory address translation mechanisms that are used by
hypervisors and operating system kernels to isolate the memory images of processes or virtual
machines from each other.

• Central processing units provide multiple privilege levels that are used to separate hypervisors
and operating system kernels and application processes.

Below are some examples for software mechanisms:

• Network protocol implementations provide filtering mechanisms that can be configured to filter
traffic directed to or received from certain applications.

• Operating system kernels can restrict the set of system calls an application is allowed to invoke.

• Operating system kernels can enforce that only applications with a valid signature are loaded and
executed.

• Database systems can enforce access control policies so that only authenticated users have ac-
cess to the data they need to have access to.
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Ethical Considerations

1 Fundamental Concepts

2 Ethical Considerations
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Computer Ethics

Definition (computer ethics)

The term computer ethics refers to the ethical principles and guidelines governing the
behaviour and decisions of individuals and organizations in the field of computing and
information technology.

• Examples of ethical principles:

- Respecting user privacy
- Avoiding unauthorized access to computer systems
- Respecting intellectual property rights
- Providing accurate information
- Considering societal implications of technology

• There can be ethical dilemmas, e.g., striking a balance between protecting systems
and respecting individual privacy.
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There is a lot to be said about ethics and computer science but we will not go into details here. But you
are encouraged to study ethics documents specific to computer science.

Here are, for example, the list of the Ten Commandments of Computer Ethics created in 1992 by the
Computer Ethics Institute:

1. Thou shalt not use a computer to harm other people.

2. Thou shalt not interfere with other people’s computer work.

3. Thou shalt not snoop around in other people’s computer files.

4. Thou shalt not use a computer to steal.

5. Thou shalt not use a computer to bear false witness.

6. Thou shalt not copy or use proprietary software for which you have not paid (without permission).

7. Thou shalt not use other people’s computer resources without authorization or proper compensa-
tion.

8. Thou shalt not appropriate other people’s intellectual output.

9. Thou shalt think about the social consequences of the program you are writing or the system you
are designing.

10. Thou shalt always use a computer in ways that ensure consideration and respect for other humans.

Further online information:

• Wikipedia: Ten Commandments of Computer Ethics

• Web: ACM Code of Ethics and Professional Conduct
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Ethical Hacking and Penetration Testing

Definition (penetration testing)

Ethical hacking or penetration testing requires that the ethical hacker or the penetration
tester has obtained permissions from an authorized party to perform security tests.

• Penetration testing is an effective mechanism to identify technical weaknesses and
to remind people of the importance of executing proper security procedures.

• Penetration testing often includes tests used to determine whether employees
follow security best practices.

• Exploiting the nature of humans is often a cheap and effective way to circumvent
technical security mechanisms.
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Ethical hackers or penetration testers are often referred to as white-hat hackers while other actors are
referred to as black-hat hackers. These terms originate from American western movies, where white
hats were often worn by heroes and black hats by villains.
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Responsible Disclosure

Definition (responsible disclosure)

A responsible disclosure is a vulnerability disclosure where a vulnerability is disclosed to
the public only after the responsible parties have been given sufficient time to remedy
the vulnerability.

• The goal is to report vulnerabilities in such a way that they can be fixed before
they may be exploited by malicious actors.

• The time given to the responsible parties should be aligned with the complexity and
potential severity of a detected vulnerability.
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Responsible disclosure requires that the disclosing party can find a suitable contact. Many bigger IT
companies provide specific contacts for responsible disclosures. Some companies are even running so
call bug bounty programs, through which certain disclosures can receive a financially reward.

RFC 9116 [2] proposes that web sites provide a resource under the path /.well-known/security.txt

to make it easier to find a proper contact. Try it out on your favorite web sites!
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Part II

Attacks on Computer Systems

The part discusses various attacks on computer systems. The goal is to develop an understanding
how vulnerabilities in software (and to some extend in hardware components) can be exploited. We will
discuss some generic classic attacks and we look at specific attacks on the different software layers of
a typical computing system.

By the end of this part, students should be able to

• enumerate attacks on hardware and software;

• explain how the control flow of a program can be changed;

• demonstrate how a stack buffer overflow can be exploited;

• described how a heap buffer overflow can be exploited;

• outline how SQL injection attacks can be performed;

• explain cross-site scripting attacks;

• distinguish first and second order code injection attacks;

• explain the different types of virtualization;

• elaborate attacks on hypervisors such as hyperjacking or virtual machine escapes;

• illustrate attacks on operating system kernels such as privilege escalation or resource exhaustion;

• sketch dynamic linking, package management, software supply chain, and ransomware attacks;

• summarize attacks on application software and users of application software.
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Attacks on Hardware

3 Attacks on Hardware
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We first review some common attacks on hardware. Many of these attacks require physical access to
the hardware and some require advanced devices to carry out an attack.
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Counterfeit Hardware Attacks

Definition (counterfeit hardware attack)

A counterfeit hardware attack involves the distribution of malicious or tampered
hardware components that compromise the security of devices.

Examples:

• Hardware trojans describe hardware components that carry a hidden function such
as providing backdoors

• Supply chain attacks aim at compromising hardware components during
manufacturing or distribution processes

• Dropping USB sticks in public spaces that emulate other USB devices such as
keyboards to gain access by injecting keystrokes
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Malicious USB devices can be used in various ways to attack computer systems. Some operating
systems request explicit user permission when an unknown USB device is plugged into a computer.
While this is well intended, humans are often not good in judging the risks and human curiosity is often
stronger than security awareness. Furthermore, a malicious USB device may also try to identify itself
as some other likely already known USB device.

Hardware attacks are a significant problem in deployment scenarios where hardware is easily accessible
to adversaries. Examples are public wireless network base stations or public electric charging stations.
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Hardware Fault Injection Attacks

Definition (hardware fault injection attack)

A hardware fault injection attack alters the operation of a device by physically
tampering with hardware components.

Examples:

• Injecting voltage glitches to change the execution of CPU instructions

• Injecting clock glitches to change the execution of CPU instructions

• Injecting faults through brief electromagnetic pulses in a specific clock cycle
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For more information, see [3, 4].
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Hardware Side-Channel Attacks

Definition (hardware side-channel attack)

A hardware side-channel attack exploits unintended information leakage from a system’s
physical implementation.

Examples:
• Monitoring power consumption during cryptographic operations to extract
properties of cryptographic keys (power analysis side-channel attacks)

• Exploiting timing variations to obtain information about data being processed by a
system (timing side-channel attacks)

• Intercepting electromagnetic radiation of wires to obtain potentially sensitive
information (electromagnetic side-channel attacks)

• Capture sound emissions using microphones to reveal information about data
received or processed by a system (acoustic side-channel attacks)
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Timing and power analysis side-channel attacks have been widely studied in the context of smart cards
since the processors embedded in smart cards usually have very limited functionality and they operate
at clock speeds that are relatively easy to handle.

The main lesson learned from these attacks is that security critical code, e.g., cryptographic algorithms,
must be implemented such that information about properties of the keys is never revealed. This implies,
for example, that the number of iterations of a loop should not depend on the properties of the keys
since breaking out of loops early can leak information via a side-channel. In other words, implementing
cryptographic algorithms does not only require that the implementation is correct, it also requires that
the implementation shows timing and power consumption behavior that is independent of the keys or
data being processed.

The risk caused by acoustic side-channel are often underestimated. Many modern devices do have
embedded microphones and recording the sound of keys presses can easily reveal which information
was entered on a keyboard. Not all keys sound the same, not all key combinations are typed with the
same speed.
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Microarchitectural Attacks

Definition (microarchitectural-attack)

A microarchitectural-attack targets the implementation of a system’s microarchitecture.

Examples:

• Speculative execution attacks to read arbitrary memory via a timing side-channel
attack (Spectre, Meltdown)

• Exploiting vulnerabilities of dynamic random-access memory (DRAM) potentially
leading to privilege escalation (Rowhammer)
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Microarchitectural attacks can be initiated by software and they may use side-channels to pass infor-
mation from the microarchitectural layer up to the software layer. This enables adversaries to execute
microarchitectural attacks via software and without requiring access to the targeted device.

Microarchitectural attacks have been studied extensively during the last decade, they are primarily ex-
ploiting microarchitectural optimizations such as speculative execution of machine instructions or spe-
cific properties of memory systems. When a new microarchitectural attack has been found, it is often
difficult to mitigate it, in the worst case this requires the replacement of hardware components.

For more information, see [5, 6].
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Spectre: Vulnerability of the Year 2018

1 # define PAGESIZE 4096

2 unsigned char array1[16] /* base array */

3 unsigned int array1_size = 16; /* size of the base array */

4 int x; /* the out of bounds index */

5 unsigned char array2[256 * PAGESIZE]; /* instrument for timing channel */

6 unsigned char y; /* does not really matter much */

7

8 // ...

9

10 if (x < array1_size) {

11 y = array2[array1[x] * PAGESIZE]; /* is there a problem here? */

12 }
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The code seems to be harmless. Well it is not really. But we can easily make it harmless. But even
then, is it harmless?

This is how the data is stored in memory. The variables x and y may be stored in registers. The variable
x indexes array1 and the value stored in array1 indexes into array2, which stretches over multiple
pages.

y

16

15

1 * pagesize0 * pagesize 2 * pagesize 255 * pagesize254 * pagesize

0

array2

array1 array1_size

x
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Spectre: Main Memory and CPU Memory Caches

• Memory in modern computing systems is layered

• Main memory is large but relatively slow compared to the speed of the CPUs

• CPUs have several internal layers of memory caches, each layer faster but smaller

• CPU memory caches are not accessible from outside of the CPU

• When a CPU instruction needs data that is in the main memory but not in the
caches, then the CPU has to wait quite a while. . .
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Spectre: Speculative Execution

• In a situation where a CPU would have to wait for slow memory, simply guess a
value and continue execution speculatively; be prepared to rollback the speculative
computation if the guess later turns out to be wrong; if the guess was correct,
commit the speculative computation and move on.

• Speculative execution is in particular interesting for branch instructions that depend
on memory cell content that is not found in the CPU memory caches

• Some CPUs collect statistics about past branching behavior in order to do an
informed guess. This means we can train the CPUs to make a certain guess.

• Cache state is not restored during the rollback of a speculative execution.
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The fact that the CPU internal cache state is not restored during the rollback is being exploited by
Spectre. Of course, CPUs could be “fixed” to restore the cache state as well but this would be very
costly to implement and hence may defeat the advantage gained by speculative execution.
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Spectre: Reading Arbitrary Memory

• Algorithm:

1. create a small array array1

2. choose an index x such that array1[x] is out of bounds
3. trick the CPU into speculative execution (make it read array1_size from slow

memory and guess wrongly)
4. create another uncached memory array called array2 and read

array2[array1[x]] to load this cell into the cache
5. read the entire array2 and observe the timing; it will reveal what the value of

array1[x] was

• This could be done with JavaScript running in your web browser; the first easy
“fix” was to make the JavaScript time API less precise, thereby killing the timing
side channel. (Obviously, this is a hack and not a fix.)
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Spectre is exploiting a design problem in modern CPUs. There is no easy fix since the root cause is
your hardware. A lot of work was spent in 2018 to harden systems such that it is getting difficult to
exploit the problem residing in the design of modern CPUs. For further information, read [7] and [8] or
take a look at the videos listed below.

Further online information:

• YouTube: Spectre and Meltdown: Data leaks during speculative execution

• YouTube: Spectre and Meltdown attacks explained understandably
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Attacks on Software
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8 Attacks on Application Software
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We now take a look at common attacks on software. Many of these attacks can be carried out in all
software layers of a computing system. For significant attacks that are known for a while, there are
often mitigations to either prevent the attack (good) or to just make the attack unlikely to succeed (not
really satisfying). The mitigations then often lead to the development of more advanced techniques to
circumvent mitigation mechanisms. The leads to an arms race resulting in increasingly complex attack
code and increasingly complex mitigation mechanisms.
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Control Flow Attacks

Definition (control flow attack)

A control flow attack diverts the intended control flow of a program to direct the
execution to malicious code.

Examples:

• Stack smashing attacks redirecting control flow to execute malicious code (often
called shellcode) injected on the stack

• Return-oriented programming attacks construct malicious code by sequencing
existing code fragments (gadgets) via function returns

• Attacks on virtual function tables change the control flow of an application written
in certain programming languages supporting late binding and the overriding of
functions
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A program has an intended or allowed flow of control. The control flow graph of a program often has
branching points and loops. A normal execution of a program is restricted by its intended control flow
graph. Control flow attacks aim at diverting from the intended or allowed flow of control, causing a
program to execute code it was never intended to execute. If it is possible to divert from the flow of
control to machine instructions controlled by an adversary, then the adversary may exploit this to start
a generic interface into the system, such as a command interpreter or a shell.

Control-flow integrity (CFI) is a general term for computer security techniques that prevent a wide variety
of control flow attacks by ensuring that the intended control flow is never violated.

Control-Flow Integrity: Precision, Security, and Performance https://doi.org/10.1145/3054924

Further online information:

• YouTube: USENIX Security ’15 - Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity
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Call Stacks and Stack Frames

Definition (call stack and stack frames)

A call stack holds a stack frame for every active function call. A stack frame provides
memory space to store

1. the return address to load into the program counter when the function returns,

2. local variables that exist during an active function call,

3. arguments that are passed into the function or results returned by the function.

To support function calls, a CPU needs to provide

• a register pointing to the top of the call stack (stack pointer),

• a register pointing to the start of the current stack frame (frame pointer),

• a mechanism to call a function (allocating a new stack frame on the call stack),

• an mechanism to return from a function (deleting a stack frame from the stack).
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The drawing below shows a typical call stack growing downwards from large addresses towards small
addresses. Each active function call results in a stack frame where the return address, a frame pointer,
saved registers, function arguments and local variables are stored. Stack frames enable nested and
recursive function calls. They also provide a very efficient way to allocate memory for local variables.

0xffffffff

: : : :

| .-> +======================+ -:

| | | saved return address | |

| | +----------------------+ |

'-|-- | saved frame pointer | | previous

| +----------------------+ | stack

| : saved registers : | frame

| : function arguments : |

| : local variables : |

fp ----> +======================+ -:

| | saved return address | |

| +----------------------+ |

'-- | saved frame pointer | | current

+----------------------+ | stack

: saved registers : | frame

: function arguments : |

: local variables : |

sp ----> +======================+ -'

v v

0x00000000
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Function call prologue and epilogue

Definition (function call prologue)

A function call prologue is a sequence of machine instructions at the beginning of a
function that prepare the stack and the registers for use in the function.

Definition (function call epilogue)

A function call epilogue is a sequence of machine instructions at the end of a function
that restores the stack and CPU registers to the state they were in before the function
was called.

Definition (stack and frame pointer)

The stack pointer is a register pointing to the beginning of the function call stack. The
frame pointer is a register pointing to the beginning of the current stack frame.
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Intel’s x86 32 processor architecture has eight general-purpose registers (eax, ebx, ecx, edx, ebp, esp,
esi, edi). The x86 64 architecture extends them to 64 bits (prefix ”r” instead of ”e”) and adds another
eight registers (r8, r9, r10, r11, r12, r13, r14, r15). Some of x86 registers have special meanings and
are not really used as general-purpose registers. The ebp (rbp) register is used to point to the beginning
of a stack frame (base pointer)) while the esp (rsp) register is used to point to the top of the stack (stack
pointer). (Note that the stack grows downwards on the x86 architecture.) There are additional special
purpose registers, most important for us is the eip (rip) register, which points to the current instruction
(instruction pointer).

Note that the base pointer ebp (rbp) is optional. It helps to debug programs but costs a few additional
instructions on every function call.

In the following, we will only consider x86 64 processors. The stack frame layout using the common
function calling conventions can be best explained with an example. Lets assume we have defined the
following C function.

1 long foo(long a, long b, long c, long d, long e, long f, long g, long h)
2 {

3 long xx = a * b * c * d * e * f * g * h;

4 long yy = a + b + c + d + e + f + g + h;

5 long zz = bar(xx, yy);

6 return zz + 42;

7 }

The common function calling conventions will pass the first six arguments in registers (rdi, rsi, rdx, rcx,
r8, r9) and the remaining two arguments will be passed via the stack. The call instruction will then push
the return address on the stack and the function prologue will push the old base register to the stack.
The automatic function local variables xx, yy, and zz are then allocated on the stack as well by adjusting
the stack pointer (rsp) accordingly.
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Stacks (Intel x86 64)

: .... .... .... .... :

|---------------------|

0x00007fffffffe318 | .... .... .... .... | ] return address

0x00007fffffffe310 | .... .... .... .... | ] saved rbp

|---------------------| <- rbp (frame pointer)

0x00007fffffffe308 | .... .... .... .... | \

0x00007fffffffe300 | .... .... .... .... | |

0x00007fffffffe2f8 | .... .... .... .... | |

0x00007fffffffe2f0 | .... .... .... .... | | char name[64]

0x00007fffffffe2e8 | .... .... .... .... | |

0x00007fffffffe2e0 | .... .... .... .... | |

0x00007fffffffe2d8 | .... .... .... .... | |

0x00007fffffffe2d0 | .... .... .... .... | /

'---------------------' <- rsp (stack pointer)
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The slide shows the stack while the main() function of the program shown in Listing 1 is being executed.
The disassembled machine instructions look like this:

1 <main>:
2 1165: 55 push %rbp

3 1166: 48 89 e5 mov %rsp,%rbp

4 1169: 48 83 ec 40 sub $0x40,%rsp

5 116d: 48 8b 05 ec 2e 00 00 mov 0x2eec(%rip),%rax

6 1174: 48 8d 55 c0 lea -0x40(%rbp),%rdx

7 1178: 48 8d 35 89 0e 00 00 lea 0xe89(%rip),%rsi

8 117f: 48 89 c7 mov %rax,%rdi

9 1182: b8 00 00 00 00 mov $0x0,%eax

10 1187: e8 c4 fe ff ff callq 1050 <fprintf@plt>

11 118c: 48 8d 3d 94 0e 00 00 lea 0xe94(%rip),%rdi

12 1193: e8 98 fe ff ff callq 1030 <puts@plt>

13 1198: 48 8d 45 c0 lea -0x40(%rbp),%rax

14 119c: 48 89 c7 mov %rax,%rdi

15 119f: b8 00 00 00 00 mov $0x0,%eax

16 11a4: e8 b7 fe ff ff callq 1060 <gets@plt>

17 11a9: 48 8d 45 c0 lea -0x40(%rbp),%rax

18 11ad: 48 89 c6 mov %rax,%rsi

19 11b0: 48 8d 3d 82 0e 00 00 lea 0xe82(%rip),%rdi

20 11b7: b8 00 00 00 00 mov $0x0,%eax

21 11bc: e8 7f fe ff ff callq 1040 <printf@plt>

22 11c1: b8 00 00 00 00 mov $0x0,%eax

23 11c6: c9 leaveq

24 11c7: c3 retq

When the function is called, the return address is put on the stack (as part of the call instruction).

The function starts with the so called function prologue: the push instruction pushes the old frame
pointer (stored in rbp) to the stack and afterwards the current stack pointer (stored in rsp) is setup
as the new frame pointer (by copying rsp into rbp). Finally, the stack pointer is moved 64 bytes by
subtracting 0x40 from rsp. This subtraction essentially allocates the space for the char array called
name in the source code.

The function epilogue consists of the leaveq and retq instructions. The leaveq instruction essentially
cleans up the stack by setting the stack point (rsp) to the frame pointer (rbp) and then restoring the old
frame pointer by popping rbp from the stack.
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1 /*
2 * Original source: https://crypto.stanford.edu/~blynn/rop/

3 *

4 * Modern computers and compilers implement various techniques

5 * to make attacks harder. For getting started, compile this

6 * file with

7 *

8 * gcc -fno-stack-protector -z execstack

9 *

10 * to disable stack protection and to have the stack memory pages

11 * marked as executable. Note that gcc will likely complain about the

12 * usage of gets() - but we use it only as a simple example for any

13 * other code that may fail to do proper bounds checking.

14 */

15

16 # include <stdio.h>

17

18 # define DEBUG

19

20 int main()

21 {

22 char name[64];

23

24 # ifdef DEBUG

25 fprintf(stderr, "character array name is at %p\n", name);

26 # endif

27

28 puts("What's your name?");

29 gets(name);

30 printf("Hello, %s!\n", name);

31 return 0;

32 }

Listing 1: Program failing to do proper bounds checking

The code between the prologue and epilogue is the code preparing the three library function calls. For
each call, the registers used to pass arguments have to be prepared. Note that the library function
are denoted using their @plt address. These are the function’s address in the procedure link table
(plt), which is used to make dynamic linking “faster”. (The library functions are called indirectly via the
procedure link table, which has the advantage that the resolution of the function’s real address is done
lazily when a library function is called for the first time.)
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Shellcode (Intel x86 64)

: .... .... .... .... :

|---------------------|

0x00007fffffffe318 | d0e2 ffff ff7f 0000 | ] return address -.

0x00007fffffffe310 | 0000 0000 0000 0000 | ] saved rbp |

|---------------------| <- rbp |

0x00007fffffffe308 | 0000 0000 0000 0000 | \ |

0x00007fffffffe300 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f0 | 0000 0000 0000 0000 | | char name[64] |

0x00007fffffffe2e8 | 6e2f 7368 00ef bead | | |

0x00007fffffffe2e0 | e8ed ffff ff2f 6269 | | |

0x00007fffffffe2d8 | 4831 f648 31d2 0f05 | | |

0x00007fffffffe2d0 | eb0e 5f48 31c0 b03b | / |

'---------------------' <- rsp <----------'
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To get flexible control of a system, it would be nice to open a shell so that further commands can be
sent to the attacked system. Hence, we are interested to obtain a short sequence of (ideally position-
independent) machine instructions opening a shell on the attacked system. Listing 2 shows the source
code of some shellcode for Linux kernels. The code between needle0 and needle1 is the actual shell-
code that we want to inject into our target program in order to let it open a shell for us. In addition, we
have to fill the name char array, overwrite the saved frame pointer, and then finally replace the return
address with the start address of the code that we have injected. When the function returns, our code
will be executed and the targeted process will turn into a shell.

While starting a shell is the main purpose of shellcode, this function is sometimes combined with estab-
lishing network connectivity.

• Bind shells open listening network port and launch a shell when a connection is established.

• Reverse shells actively connect back to a machine controlled by an attacker.

• Staged shellcode starts with some small initial payload that downloads and executes a larger
payload.
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1 # Original source: https://crypto.stanford.edu/~blynn/rop/
2 #

3 # We want to invoke the execve() system call to start "/bin/sh".

4 #

5 # int execve(const char *filename, char *const argv[], char *const envp[]);

6 #

7 # We jump to 'there' and then call 'here'. This allows us to find the

8 # location of the string "/bin/sh" regardless where the code is located.

9 # We set

10 # rdi to the string "/bin/sh" (the filename parameter)

11 # rax to the syscall number (the lower 8 bits of rax are in al)

12 # rsi to 0 (the argv parameter)

13 # rdx to 0 (the envp parameter)

14 # and then execute the system call.

15 #

16 # The needle0 and needle1 labels are used later to find the beginning

17 # and the end of the code...

18

19 .global main

20 .text

21 main:

22 push %rbp # push the old base pointer on the stack

23 mov %rsp,%rbp # set base pointer to current stack pointer

24 needle0: # a marker that we use later to find code

25 jmp there # jump to there...

26 here:

27 pop %rdi # set %rdi to the string (pop from stack)

28 mov $0x3b, %rax # set %rax to 59 (execve syscall number)

29 xor %rsi, %rsi # set %rsi to 0 (argv of the execve syscall)

30 xor %rdx, %rdx # set %rdx to 0 (envp of the execve syscall)

31 syscall # initiate the syscall

32 there:

33 call here # jump back, leaving string address on stack

34 .string "/bin/sh"

35 needle1: .octa 0xdeadbeef # marker that we use later to find code

Listing 2: Shellcode for opening a shell on x86 64
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Shellcode (Intel x86 64) Improvements

• We have to know the exact start address of the name buffer on the stack. This can
be relaxed by prefixing the shellcode with a sequence of nop instructions that act
as a landing area.

• We have to know where precisely the return address is located on the stack. This
can be relaxed by filling a whole range of the stack space with our jump address.

• Systems with memory management units often randomize the memory layout, i.e.,
the stack is placed randomly in the logical address space whenever a program is
started.

• Systems with memory management units often disable the execute bit for the stack
pages and hence our attack essentially leads to a memory access failure.

• Compilers may insert bit pattern (stack canary) that can be checked to detect
memory overwrites.
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Stack smashing attacks on 32-bit Intel processors were well described in 1996 [9]. Various mechanisms
were proposed to deal with the problem soon after [10, 11]. While some of these defense mechanisms
are effective against basic stack smashing attacks described so far, attackers found ways to work around
some of the defense mechanisms.

While some defense techniques essentially only decrease the chance of success, it may be possible to
work against them by simply probing more efficiently. However, making the stack non-executable raises
a real challenge and in 2007 a new type of attacks got known that simply used existing machine code
of the C library to construct shell codes [12]. This was first called “return-into-libc” and evolved into
“return-oriented-programming” [13].

While modern computing systems have several defense mechanism in place, it is important to note that
embedded systems usually do not have the necessary resources to deploy suitable defense techniques.
Memory protection mechanisms are not yet common on embedded systems and code is usually stati-
cally placed into memory, making it easy to create attacks that work well on a large number of deployed
embedded systems.
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Return Oriented Programming (Intel x86 64)

: .... .... .... .... :

0x00007fffffffe328 | c0c9 e3f7 ff7f 0000 | ] return to system =>

0x00007fffffffe320 | d0e2 ffff ff7f 0000 | ] char *command ------.

+---------------------+ |

0x00007fffffffe318 | 5fba e1f7 ff7f 0000 | ] return to gadget => |

0x00007fffffffe310 | 0000 0000 0000 0000 | ] saved rbp |

|---------------------| <- rbp |

0x00007fffffffe308 | 0000 0000 0000 0000 | \ |

0x00007fffffffe300 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2f0 | 0000 0000 0000 0000 | | char name[64] |

0x00007fffffffe2e8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2e0 | 0000 0000 0000 0000 | | |

0x00007fffffffe2d8 | 0000 0000 0000 0000 | | |

0x00007fffffffe2d0 | 2f62 696e 2f73 6800 | / |

'---------------------' <- rsp <--------------'

Jürgen Schönwälder (Constructor University) System Security: Attacks on Computer Systems CC-BY-NC-ND February 5, 2026 32 / 195

It is possible to use the machine code of the C library (or fragments of code of the C library) to craft
attack code. Instead of overwriting the return address on the stack with the address of shellcode on
the stack, we return back into the libc at an entry point that allows us to get control over the system.
In a standard C library, there is a function system(const char *command), which can give us a shell
if we provide "/bin/sh" as argument to the system() function. While we could return straight into the
system() function, we first have to setup the register rdi so that it points to a suitable command string.

We achieve this by searching the C library for two machine instructions that pop a value from the stack
into the register rdi followed by a return. Such a fragment ending in a return is called a gadget and our
approach is now to first return into the gadget (which loads rdi from stack space that we control) and
then we return into the system() function.

On a Debian 10.8 system, the relevant library assembly code looks like this:

0x00007ffff7e3c9c0: test %rdi,%rdi # system

0x00007ffff7e3c9c3: je 0x7ffff7e3c9d0 <__libc_system+16>

0x00007ffff7e3c9c5: jmpq 0x7ffff7e3c420 <do_system>

0x00007ffff7e3c9ca: nopw 0x0(%rax,%rax,1)

0x00007ffff7e3c9d0: sub $0x8,%rsp

0x00007ffff7e3c9d4: lea 0x13cb46(%rip),%rdi

0x00007ffff7e3c9db: callq 0x7ffff7e3c420 <do_system>

0x00007ffff7e3c9e0: test %eax,%eax

0x00007ffff7e3c9e2: sete %al

0x00007ffff7e3c9e5: add $0x8,%rsp

0x00007ffff7e3c9e9: movzbl %al,%eax

0x00007ffff7e3c9ec: retq

0x0007ffff7e1ba5f: pop %rdi # gadget

0x0007ffff7e1ba60: retq

Due to the variable length encoding of Intel CPU instructions, it is possible to find a large collection of
gadgets in a standard C library and if chained together in clever ways, it is possible to create attack
codes with loops, conditional statements etc.

Protection against this type of attack can be achieved by so called control flow integrity protection
mechanisms, which have been an important topic of research and development lately.

Return-Oriented Programming: Systems, Languages, and Applications doi:10.1145/2133375.2133377
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C Format Strings

%s interpret the next argument as a pointer to a null-terminated string
%x interpret the next argument as an integer and print the value in hexadecimal
%#lx interpret the next argument as a long integer and print the value in hexadec-

imal prefixed with 0x

%#018lx interpret the next argument as a long integer and print the value in hexadec-
imal prefixed with 0x and 0-padded filling 18 characters

%n interpret the next argument as a pointer to an integer and write the number
of characters printed so far to the integer pointed to

%4$s interpret the fourth argument as a pointer to a null-terminated string

• The classic C format string can do many fancy things. . .

• We focus here on the subset most relevant / convenient for exploits.
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Format String Attacks (Intel x86 64)

: .... .... .... .... :

| 0000 0000 0000 0001 | long i

| cccc cccc cccc cccc | long c

| 0000 0002 5555 5060 | ??

| 0000 7fff ffff e328 | ??

|---------------------|

0x00007fffffffe218 | .... .... .... .... | ] return address

0x00007fffffffe210 | 0000 7fff ffff e240 | ] saved rbp

|---------------------|

0x00007fffffffe208 | .... .... .... .... | ] char *s

0x00007fffffffe200 | aaaa aaaa aaaa aaaa | ] long a

0x00007fffffffe1f8 | bbbb bbbb bbbb bbbb | ] long b

|---------------------|

: .... .... .... .... :
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Format string attacks became known in the late 1990s, and they were nicely described in [14]. In the
simplest form, format string attacks can be used to read program internal data that normally should
not leak to the outside. But format strings can also be used to modify memory since the %n formating
sequence can write an int value to a given memory location.

Modern compilers know about library functions accepting format strings and they check whether the
format string is a static string or a string that may be modified at runtime and they generate warnings. It
is also possible to label custom functions accepting format strings so that the compiler can check custom
functions as well. However, if developers ignore compiler warnings, then code may still be subject to
format string attacks.

The vulnerable program shown in Listing 3 will happily show the content of the stack if you pass format
strings as input (in this case as command line arguments):

./victim '%p %p %p %p %p %p %p %p %p %p %p %p %p %p %p %p %p %p'

Given that we know the source code, it should be relatively easy to spot where the stack frame of the
main() and the vuln() function is located. On a Debian 10.8 system,

./victim '%11$s'

will print the secret message to the standard output. If you pass carefully crafted format string values to
the victim program, you may also change the content of memory cells.

A format string attack is essentially a special form of a code injection attack, where data provided by a
user of a program is mistakenly treated as code that is interpreted at runtime. (A format string can be
seen as a little “program” that is interpreted at runtime by the C library to generate formatted output.)

Further online information:

• YouTube: A simple Format String exploit example
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1 /*
2 * Note: gcc will likely complain about the format string

3 */

4

5 # include <stdio.h>

6

7 static void vuln(char *string)

8 {

9 char *s = "don't catch my little secret";

10 long a = 0xaaaaaaaaaaaaaaaa;

11 long b = 0xbbbbbbbbbbbbbbbb;

12 (void) a; (void) b; (void) s; /* tell cc that we don't use these */

13

14 printf(string);

15 puts("");

16 }

17

18 int main(int argc, char *argv[])

19 {

20 long i;

21 long c = 0xcccccccccccccccc;

22 (void) c; /* tell cc that we don't use c */

23

24 for (i = 1; i < argc; i++) {

25 vuln(argv[i]);

26 }

27 return 0;

28 }

Listing 3: Program passing user input as a format string to printf()
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Heap Overflows and Use After Free

• Memory regions dynamically allocated on the heap can be overrun or underrun.

• Dangling pointers can lead to use after free situations.

• Heap smashing problems are a bit more challenging to exploit.

• General idea:
• Target function pointers stored on the heap.
• Overwrite function pointers to change the control flow.
• Function pointers are easily found in virtual function tables.
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Typical problems are heap buffer underruns / overruns and dangling pointers (use after free errors).
Listing 4 shows a C program creating dangling pointers. The function returns a pointer to the last word
of a copy of the string after the copy of the string has been freed. If the heap memory is later reused for
a different purpose, the pointer may be used to make modifications that can be exploited. Note that the
dangling pointer is to a certain extend controlled by the input passed to the program.

While heap smashing attacks can easily change the internal program state, things can get worse if
heap smashing is used to change function pointers (or pointers to function pointers). This is a common
problem in object-oriented languages like C++, which implement polymorphism through function pointer
tables (called vtables in C++). Listing 5 shows a C++ program with some embedded attack code that
changes the behavior of class instances by overwriting the pointer to the vtable.

Further online information:

• YouTube: The Heap: How do use-after-free exploits work?
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1 /*
2 * last-word/last.c --

3 *

4 * This program creates dangling pointers to the heap.

5 */

6

7 # include <stdio.h>

8 # include <stdlib.h>

9 # include <string.h>

10

11 static char* last_word(char *msg)

12 {

13 char *last = NULL, *next;

14 char *s = strdup(msg);

15 if (s) {

16 last = strtok(s, " ");

17 while ((next = strtok(NULL, " ")) != NULL) {

18 last = next;

19 }

20 free(s);

21 }

22 return last;

23 }

24

25 int main(int argc, char *argv[])

26 {

27 for (int i = 1; i < argc; i++) {

28 char *p = last_word(argv[i]);

29 if (p) {

30 puts(p);

31 }

32 }

33 return 0;

34 }

Listing 4: Program with a use after free (dangling pointer) vulnerability
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1 /*
2 * vtable.cc --

3 */

4

5 # include <iostream>

6 using std::cout;

7

8 class A {

9 public:

10 virtual const char* f() { return "A"; }

11 virtual ~A() {}

12 int a, b;

13 };

14

15 class B : public A {

16 public:

17 const char* f() { return "B"; }

18 ~B() {}

19 int c, d;

20 };

21

22 int main(void)

23 {

24 A* a = new A();

25 B* b = new B();

26 A* p = b;

27

28 cout << a->f() << " "

29 << b->f() << " "

30 << p->f() << std::endl;

31

32 // Lets smash the vtable pointer programmatically (but this could

33 // also be achieved by exploiting buffer overruns or using a format

34 // string vulnerability).

35

36 *(char **) p = *(char **) a;

37

38 cout << a->f() << " "

39 << b->f() << " "

40 << p->f() << std::endl;

41

42 delete a;

43 delete b;

44 return 0;

45 }

Listing 5: Program demonstrating vtable pointer overwriting
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Time-of-Check-to-Time-of-Use Attacks

Definition (time-of-check-to-time-of-use attack)

A Time-of-Check-to-Time-of-Use attack exploits a race condition between the check of
a condition and the use of the result.

Examples:

• Operations on file systems are problematic if the file system can change between
the check of file properties (or permissions) and the subsequent action

• Operations on databases when there is a delay between the authorization of a
transaction and the execution of the transaction
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The Python script below appears to be harmless but it has a race condition.

1 import os
2 import time

3

4 def collect(dir, age):

5 """Collect all files in dir that are older than age days."""

6 obsoletes = []

7 for root, _, files in os.walk(dir):

8 for name in files:

9 fn = os.path.join(root, name)

10 if os.path.getmtime(fn) < time.time() - age * 86400:

11 obsoletes.append(fn)

12 return obsoletes

13

14 def delete(obsoletes):

15 """Unlink all files listed in obsoletes."""

16 for fn in obsoletes:

17 os.unlink(fn)

18

19 delete(collect("/tmp", 1))

An adversary can exploit the race condition between collecting file names and deleting them by cre-
ating a file /tmp/foo/passwd with an old modification time and then between the time of check and
the time of use delete /tmp/foo and create a symbolic link /tmp/foo pointing to /etc. The unlink of
/tmp/foo/passwd will then unlink /etc/passwd.
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Code Injection Attacks

Definition (code injection attack)

A code injection attack is an attack on a system where input is passed to a program
(the generator), which generates executable code to be executed by another program
(the executor). A code injecting attack exploits that input can inject instructions into
the generated code.

.-----------. .-----------.

| | generated code | |

-------> | generator | ----------------> | executor |

input | | (output) | |

'-----------' '-----------'
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Code injection attacks should be more precisely called “code-injection attacks on outputs”. For a more
detailed discussion, see the paper by Ray and Ligatti [15]. But we adopt the more common use of the
term and just call these attacks code injection attacks.

Code injection attacks are a common problem of programs that internally generate code that is inter-
preted by other system components. Examples are web services generating SQL queries passed to a
database server for execution. However, code injection can also happen at the system level, e.g., when
people carelessly write shell scripts. Code injection vulnerabilities are typically caused by a failure to
properly validate and sanitize inputs.
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SQL Injection Attacks

Definition (sql injection attack)

An sql injection attack is a code injection attack where an attacker sends input to an
application with the goal to modify SQL queries made by the application in order to
gain access to additional information or to modify database content.

• SQL injection attacks are often made possible by careless construction of queries.
Here is an example in C:

snprintf(buffer, size,

"SELECT user, balance FROM account WHERE user='%s'", name);

• Prepared statements provide a safe way to construct SQL queries, ensuring that
parameters remains data and do not accidentally become code.
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SQL injection attacks are code injection attacks where the generated output are SQL queries passed
to a relational database system. SQL injection attacks are popular since many web applications were
implemented using a business logic running on top of database systems. Developers fail to properly
validate and sanitize inputs and SQL queries are often created in a sloppy way (i.e., without using
named parameters in prepared statements).

SQL injection attacks are known since the 1990s [16] and they still are a problem today even though
here are suitables SQL APIs (prepared statements) avoiding injection problems. The reason seems to
be a mixture of human error and laziness, lack of education, or simply the pressure to turn quick and
dirty prototypes into production code.

Some examples how to exploit the code generating SQL queries above:

• Setting name to the string "' OR 1=1; --", the query expands to:

1 SELECT user, balance FROM account WHERE user='' OR 1=1; --'

• Setting name to the string "' UNION SELECT password, id FROM accounts; --", the query ex-
pands to:

1 SELECT user, balance FROM account WHERE user=''
2 UNION SELECT password, id FROM accounts; --'

It is very easy to be destructive, i.e., dropping entire tables. It is also possible to add rows where it is
difficult to trace back where the rows originate from.

Further online information:

• YouTube: Running an SQL Injection Attack

• Web: SQL Injection Attacks by Example
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Command Injection Attacks

Definition (command injection attack)

A command injection attack is a code injection attack where an attacker sends input to
an application with the goal to modify commands passed to a command interpreter in
order to execute commands injected by the attacker.

• Command injection attacks are often the result of careless construction of system
level commands. Here is an example in C:

char cmd[256] = "/usr/bin/cat ";

strncat(cmd, argv[i], sizeof(cmd) - strlen(cmd) - 1);

system(cmd);

• If argv[i] contains the string /dev/null;reboot, the command
/usr/bin/cat /dev/null;reboot will be executed.
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The full example code is this:

1 # include <string.h>
2 # include <stdlib.h>

3

4 int main(int argc, char* argv[])

5 {

6 for (int i = 1; i < argc; i++) {

7 char cmd[256] = "/usr/bin/cat ";

8 strncat(cmd, argv[i], sizeof(cmd) - strlen(cmd) - 1);

9 system(cmd);

10 }

11 return 0;

12 }

The problem is that user supplied data must be treated as a file name but due to the lack of proper
quoting, user supplied data can be interpreted as a new command. Note that adding proper quotes
is non-trivial. Enclosing argv[i] in double quotes still allows an attacker to inject code via $(reboot).
Enclosing argv[i] in single quotes also does not help if the content of argv[i] is ';reboot; echo '.

Using a function like system() in a safe way is difficult. It is much more secure to fork a process and to
exec a program directly without passing the command through a shell.
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Cross-Site-Scripting Attacks

Definition (cross-site scripting attack)

A cross-site scripting attack is a code injection attack where an attacker injects code
(scripts) into web pages such that the injected code (scripts) are delivered for execution
to browsers run by visitors of the web page.

• A simple cross-site scripting attack would be to submit some JavaScript to a web
form, e.g.:

<script type="text/javascript">alert("XSS");</script>

• If the browser does not check the content, it may deliver the script to other users.

• The script running in the browser of other users can then do malicious things such
as collecting information or displaying phishing dialogues.
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Note that cross-site scripting attacks can also happen via query parameters embedded in URLs. And
given that query parameters may be passed between systems, it is possible that the attack is indirect,
i.e., the attacker sends carefully crafted input to a vulnerable server, which passes it on to other servers
until it is eventually delivered to browsers executing the injected code.
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Cross-Site-Request-Forgery Attacks

Definition (cross-site request forgery attack)

A cross-site request forgery attack is an attempt to invoke actions on a web application
where malicous commands are injected into the context of an existing web session.

• The attack requires that a user has a valid session with a web application.

• A URL injected into the user’s web browser leads a request within the existing
session to the web application.
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William Zeller and Edward W. Felten: Cross-Site Request Forgeries: Exploitation and Prevention Prince-
ton University
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First and Second Order Code Injection Attacks

Definition (first order code injection attacks)

First order code injection attacks are caused by inputs that directly cause modified code
to be generated and executed.

Definition (second order code injection attacks)

Second order code injection attacks are caused by data that is stored in the system and
causes system components to execute modified code when the data is processed.

• The injection of attack data and the execution of the attack are often decoupled in
second order attacks, making it harder to track down the origin of the attack data.
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Second order attacks can be subtle. For example, including unexpected character code points in ES-
SIDs of wireless networks cause systems to fail or to show users misleading wireless names, directing
them to malicious access points.

Further online information:

• xkcd: Exploits of a Mom

47

https://xkcd.com/327/


Attacks on Hypervisors

3 Attacks on Hardware

4 Attacks on Software

5 Attacks on Hypervisors

6 Attacks on Operating System Kernels

7 Attacks on System Software

8 Attacks on Application Software
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Hardware virtualization was invented in the late 1960s and early 1970s and deployed on mainframe
computers [17]. Here is a quote from the paper published in 1974:

”Virtual machines have finally arrived. Dismissed for a number of years as merely academic
curiosities, they are now seen as cost-effective techniques for organizing computer systems
resources to provide extraordinary system flexibility and support for certain unique applica-
tions.”

Hardware virtualization was becoming important again in the 1990s when the CPUs of smaller com-
puters became powerful enough to run virtual machines. The instruction sets of CPUs were extended
over time to better support virtualization. The virtualization functionality is implemented by some control
software called a hypervisor (or in older publications a virtual machine monitor).

In the modern world, virtual machines are a very widely used, they drive cloud infrastructures, they are
used to consolidate servers to save costs and energy, or they are used to switch easily between different
operating systems or different versions of operating systems. They also start to enjoy increased usage
on desktop systems and within embedded systems.
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Bare Metal Virtualization (Type I)

Hypervisor (e.g. VMware)
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System

Hardware

System
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System

• Running on hardware

• Multiple operating systems

• Separation and isolation

• Targeting server systems

• Server consolidation

• VMware, KVM, . . .
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A bare metal hypervisor executes directly on the physical hardware and it provides services to run
multiple virtual machines. Each virtual machine runs its own operating system. The hypervisor assigns
CPU and memory resources to the virtual machines. Bare metal hypervisors are popular on the server
side. They enable the consolidation of server hardware and the creation of flexible cloud computing
infrastructures.
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Hosted Virtualization (Type II)

Hypervisor (e.g. VirtualBox)
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A hosted hypervisor runs virtual machines on top of a regular operating system. They target desktop
systems where virtual machines are used to run applications requiring different operating systems or to
quickly run experiments that should not have any impact on the underlying desktop system.
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OS-Level Virtualization (Container)

Operating System + Isolation Mechanisms (e.g. LXC)

Hardware

• Separation of processes

• Small performance overhead

• Single operating system ABI

• Linux Container (LXC), . . .
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Operating system level virtualization essentially separates groups of processes executing inside a con-
tainer from groups of processes executing inside some other container. The operating system kernel
manages all processes, the regular processes and the processes inside of containers. Special kernel
mechanisms are provided to control CPU resources and memory resources.

Container technology has become popular since (i) a container has very little overhead compared to
a full virtual machine and (ii) it is possible to compose container images. For example, an operating
system container image may be combined with a database backend image and a web server image to
provide the basis of an application service image.
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Hyperjacking Attacks

Definition (hyperjacking attack)

A hyperjacking attack aims at replacing a hypervisor with a malicious hypervisor.

• Hyperjacking can be achieved by

1. injecting a malicious hypervisor below the legitimate hypervisor
2. replacing the legitimate hypervisor
3. injecting a malicious hypervisor above the legitimate hypervisor

• The presence of a malicious hypervisor is difficult to detect from the operating
systems
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Hyperjacking attacks require access to the hardware or to the boot software used to start hypervisors.
As such, these attacks require to obtain the necessary access or privileges using other means. How-
ever, if a hyperjacking attack is successful, then the adversary is in a very comfortable position since
malicious hypervisors are difficult to detect, unless the entire boot chain can be verified.

Further online information:

• Wikipedia: Hyperjacking
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Virtual Machine Escape Attacks

Definition (virtual machine escape attack)

A virtual machine escape attack is a program breaking out of a virtual machine in order
to interact with the underlying hypervisor or host operating system.

• Virtual machine escape attacks break the isolation provided by the hypervisor

• Vulnerabilities of this kind have been found in many popular hypervisors
(e.g., Xen, KVM, VMware, Hyper-V, VirtualBox)
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There are several well documented virtual machine escape vulnerabilities. A general software engi-
neering insight is that the number of bugs grows with code size and code complexity. Bruce Schneier
once wrote:

“Complexity is the worst enemy of security, and our systems are getting more complex all
the time.”

As a consequence, security critical software should be simple and not overloaded with many non-
essential features. This clearly applies to hypervisors, a good secure hypervisor avoids complexity and
is ideally well reviewed and maintained.

Hypervisor security is still a hot topic for cloud computing infrastructures and people work on additional
hardware support to improve hypervisor and virtual machine security such as keeping all data in main
memory encrypted so that only specific virtual machines can access the data, also called confidential
computing.

Further online information:

• Wikipedia: Virtual machine escape

• Wikipedia: Confidential computing
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Virtual Machine Rootkit Attacks

Definition (virtual machine rootkit attack)

A virtual machine rootkit attack is an attempt to install a rootkit running underneath
an operating system.

• A virtual machine rootkit attack can be seen as a special case of a hyperjacking
attack.

• A virtual machine rootkit may launch and run malware in separate invisible virtual
machines that are hard to detect.
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The concept of virtual machine rootkits has been described in [18] in 2006. The Blue Pill rootkit based on
x86 virtualization originated at the same time and is credited to Joanna Rutkowska, a polish computer
security research. Joanna Rutkowska later was involved in the creation of the Qubes OS security-
oriented desktop. The Qubes OS uses the Xen hypervisor to launch desktop applications in virtual
machines, providing hypervisor isolation between desktop applications. The Xen hypervisor [19] is a
rather small footprint hypervisor with a microkernel architecture.

Further online information:

• Wikipedia: Blue Pill (software)

• Wikipedia: Qubes OS
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Modern operating system kernels execute at higher privilege levels and they use their privileges to
isolate processes from each other. As such, they are a natural target for adversaries. A compromised
kernel usually has complete control over application processes.

Widely deployed modular monolithic kernel architectures have reached an enormous complexity and
as Bruce Schneier once said, complexity is an enemy of security. A big driver for complexity is the
greediness for performance. There is a strong desire to move functionality into the kernel, in particular
functionality related to the input and output operations. Modern operating system kernels provide inter-
faces allowing applications to submit byte code to the kernel, which is then within the kernel verified and
translated to machine code and executed.
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Loadable Kernel Module Attacks

Definition (loadable kernel module attack)

A loadable kernel module attack uses loadable kernel modules to injects malicious code
into an operating system kernel.

• Operating systems supporting many different hardware configurations often load
drivers dynamically into the kernel

• Loadable kernel modules can also extend the functionality of the kernel by
implementing additional file systems, network protocols etc.

• Malicious kernel modules have almost unlimited access to programs on monolithic
kernels
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Loadable kernel modules are essential for operating system software distributions that can be installed
and used on a large variety of hardware configurations. The key idea is to boot a small kernel with
the essential features and to load the kernel modules dynamically that are required to support the
discovered hardware components and to provide the functionality that is required.

If an operating system kernel allows an adversary to load malicious kernel modules, then such a ker-
nel module may either just snoop on data processed by applications or it may actively influence the
behaviour of application and even destroy applications or the entire system.

Secure systems therefore need to control loadable kernel modules. From a security point of view, the
best approach is to remove the support for loadable kernel modules from the kernel. This requires to
build custom kernels specific to the hardware and the functionality required. An alternative approach is
to disable loadable kernel modules after the system initialization. This reduces the time window during
which an attack can be performed, but this approach does not remove the attack vector completely.
Another alternative is to limit loadable kernel modules to those with a valid signature. This adds flexibility
since modules with proper signatures and still be loaded or unloaded at runtime but this requires that a
process is in place to control who can sign kernel modules and to handle the rollover of keys.

Further online information:

• Wikipedia: Loadable kernel module
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Kernel Rootkit Attacks

Definition (kernel rootkit attack)

A kernel rootkit attack is an attempt to install a rootkit within an operating system
kernel.

• A kernel rootkit can be installed as a loadable kernel module.

• Privilege escalation attacks often precede kernel rootkit attacks in order to obtain
the necessary permissions.

• Persistent kernel rootkits surviving reboots

• Volatile kernel rootkits disappearing after a reboot

• Kernel rootkits are difficult to detect and hence a complete re-installation is usually
necessary if there are indicators for the existence of a kernel rootkit.

Jürgen Schönwälder (Constructor University) System Security: Attacks on Computer Systems CC-BY-NC-ND February 5, 2026 52 / 195

Kernel rootkits usually intercept system calls in order to hide their existence. By intercepting system
calls, it is possible to hide files, processes, and if applicable the loaded kernel module implementing the
rootkit.
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Kernel Privilege Escalation Attacks

Definition (kernel privilege escalation attack)

A kernel privilege escalation attack is an attempt to gain access to resources that are
normally protected from an application or user.

• Operating system kernels usually execute at higher privilege levels and protect
resources against access from less privileged processes.

• Kernel privilege escalation attacks cause less privileged processes to gain higher
privileges, on Unix systems typically root privileges.

• Some operating systems put application processes into restricted execution
environments called jails and kernel privilege escalation attacks may be used to
escape from the jail (jailbreaking).
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Privilege escalation in general means that processes receive privileges they are not entitled to. Attacks
usually exploit vulnerabilities in programs executing with higher privileges. Attacks usually proceed in
several steps:

1. Execute an attack with the goal to get unprivileged access to system.

2. Execute an attack to escalate privileges to gain root or kernel level privileges.

3. Install a (persistent) rootkit that provides backdoors and hides the existance of an attacker on the
system.

4. Install and execute an attack abusing the system to collect and steal information, to block access
to data, to use the system for purposes it is not intended for, to attack other systems, etc.

On mobile devices, vendors often sandbox applications so that they can’t damage the system itself or
steal information they are not entitled to have access to. Jailbreaks are often used on such devices to
break the sandboxing mechanisms in order to gain full control over the hardware.
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Kernel Resource Exhaustion Attacks

Definition (kernel resource exhaustion attack)

A kernel resource exhaustion attack is an attempt to consume resources managed by
the operating system kernel with the goal to make the system unusable.

• Such attacks are also called denial of service attacks.

• Example: A program recursively creating processes as fast as possible
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A classic example is a fork bomb, i.e., a program that creates copies of itself as fast as possible,
where each copy does the same. It is practically impossible to stop this since whenever a program is
terminated, a new one will be created.

Here is a fork bomb in C:

1 # include <unistd.h>
2

3 int main(void)

4 {

5 while (1) {

6 fork();

7 }

8 return 0;

9 }

And here is a fork bomb in Python:

1 import os
2

3 while True:

4 os.fork()

A (not very effective) way to control this is to limit the number of processes a user can created. To be
effective, this limit should be small. A small limit, however, runs the risk that the limit will be reached
while executing regular workloads. Hence it is tricky to find a limit that does not impact regular use of
the computer but is also effective against fork bombs.

There are similar attacks that target other resources. A malicious program may allocate as much mem-
ory as possible. Or a program may allocate as many files as possible or it may try to fill storage space
with random data. A malicious program could also try to allocate all network sockets or to consume all
network bandwidth. It is quite easy to write such programs and they can be astonishingly effective.
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Dynamic Linking Attacks

Definition (dynamic linking attack)

A dynamic linking attack tries to manipulate the dynamic linker to link malicious
libraries to a program, usually at program startup time.

• On Linux systems, the LD_PRELOAD environment variable can specify libraries that
are loaded before any of the other system libraries are loaded.

• On MacOS systems, the DYLD_INSERT_LIBRARIES environment variable can
specify libraries that are loaded before any of the other system libraries are loaded.
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Dynamic linking is widely deployed to avoid linking library code into each and every application. By
linking libraries dynamically, executable programs can be kept small and patches fixing problems in
libraries can be rolled out efficiently without having to update all programs using a specific library.

The cost of dynamic linking is a certain overhead at program startup time and the fact that programs
have to trust the dynamic linker to only link libraries that can be trusted. On some operating systems,
configuration files and environment variables can be used to influence the dynamic linker.

Load-time interpositioning can be a very powerful tool since it can be applied to any executable that
uses shared libraries. The example shown in Listing 6 can be used to make a program believe it is
executing at a different point in time.

Linux developers can use a program called fakeroot that runs a command in an environment where the
command believes to have root privileges for file manipulation. This can be used to construct archives
with proper file ownerships without having to work with a root account.
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1 /*
2 * datehack/datehack.c --

3 *

4 * Build using cmake. Use as follows:

5 *

6 * LD_PRELOAD=./build/datehack.so date (Linux)

7 * DYLD_INSERT_LIBRARIES=./build/libdatehack.dylib date (MacOS)

8 *

9 * See fakeroot <http://freecode.com/projects/fakeroot> for a project

10 * making use of LD_PRELOAD for good reasons.

11 *

12 * http://hackerboss.com/overriding-system-functions-for-fun-and-profit/

13 */

14

15 # define _GNU_SOURCE

16 # include <time.h>

17 # include <dlfcn.h>

18 # include <stdlib.h>

19 # include <unistd.h>

20 # include <sys/types.h>

21 # include <stdio.h>

22

23 # define TIME_OFFSET (1 * 24 * 60 * 60 )

24

25 static struct tm *(*orig_localtime)(const time_t *timep);

26 static int (*orig_clock_gettime)(clockid_t clk_id, struct timespec *tp);

27

28 struct tm *localtime(const time_t *timep)

29 {

30 time_t t = *timep - TIME_OFFSET;

31 return orig_localtime(&t);

32 }

33

34 int clock_gettime(clockid_t clk_id, struct timespec *tp)

35 {

36 int rc = orig_clock_gettime(clk_id, tp);

37 if (tp) {

38 tp->tv_sec -= TIME_OFFSET;

39 }

40 return rc;

41 }

42

43 __attribute__ ((constructor))

44 static void _init(void)

45 {

46 # pragma GCC diagnostic push

47 # pragma GCC diagnostic ignored "-Wpedantic"

48 orig_localtime = dlsym(RTLD_NEXT, "localtime");

49 if (! orig_localtime) {

50 abort();

51 }

52

53 orig_clock_gettime = dlsym(RTLD_NEXT, "clock_gettime");

54 if (! orig_clock_gettime) {

55 abort();

56 }

57 # pragma GCC diagnostic pop

58 }

Listing 6: Load-time library call interpositioning example
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Package Management Attacks

Definition (package management attack)

A package management attack is an attempt to modify a software package manage to
accept malicious software packages.

Examples:

• Configure the package manager to accept packages from malicious sources.

• Configure the package manager to use malicious keys to validate packages.

• Create malicious packages signed with value keys.

• Create malicious packages exploiting bugs of a package manager.

• Instruct the user to manipulate the package manager’s configuration.

Jürgen Schönwälder (Constructor University) System Security: Attacks on Computer Systems CC-BY-NC-ND February 5, 2026 57 / 195

Operating systems usually come with software package management solutions that make it easy to
install, update, and remove additional software components. A software package management system
needs to ensure the integrity and authenticity of software packages. This is usually achieved by using
cryptographic hashes and signatures. But even for a good software package management solution, one
has to trust those who create packages to ensure that they are free of malware.
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Development Tool and Software Supply Chain Attacks

Definition (development tool attack)

A development tool attack is an attack on software development tools in order to create
malicious executable software or malicious configurations of executable software.

Definition (software supply chain attack)

A software supply chain attack is a malicious attempt to gain access to a target by
exploiting a weakness in the systems or processes of a third-party vendor or partner.
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A large number of tools are used in a modern software development lifecycles and all of them need to
be trustworthy. Malicious development tools can infiltrate software with malicious functionality that is
difficult to detect.

For a given target, it may be easier to attack the target’s supply chain than the target directly. If a very
well organized company follows strict procedures to produce secure software, then it also has to verify
that all software components suppliers follow similar strict procedures. Otherwise, an attacker may
decide to attack a supplier in order to infiltrate products made by the well organized company.
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System Logging and Auditing Attacks

Definition (system logging and auditing attack)

A system logging and auditing attack is an attempt to (1) obtain additional information
about a target or (2) manipulate system logging and auditing functions in order
eliminate or modify information about a security incident.
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System logs provide important information for forensics. However, they may also provide rich infor-
mation to help attackers that are planning their attacks. Furthermore, attackers may be interested in
altering system logs in order to remain stealthy. As a consequence, system logs and auditing data
should be maintained on specially protected systems and data should be protected against unautho-
rized changes. Furthermore, the completeness of auditing data may need to be ensured. Since system
logs and auditing data may be used in court cases, it is important that the integrity and completeness
of the data can be proven.

Some companies store critical system logs and auditing data on write-only memory to ensure that
the data is never modified. Note that the requirement to keep accurate logs may interfere with the
requirement to delete data when it is not needed anymore, see European’s GDPR rules.
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Ransomware Attacks

Definition (ransomware attack)

A ransomware attack is a cryptovirology attack permanently blocking access to the
victim’s data unless a ransom is paid.

• Ransomware attacks usually encrypt files using a random key.

• The victim can buy the corresponding decryption key after paying a ransom.

• Advanced ransomware also targets backups to increase the pressure to pay ransom.

• More advanced ransomware attacks steal data before encrypting it with the thread
to publish the data if no ransom is paid.

• Some advanced ransomware attacks also try to encrypt backups in order to make it
difficult to rollback to a time before the ransomware attack started.
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The concept of ransomware was first described in 1996 [20] and has since then become a profitable
business [21]. The availability of cryptocurrency has made it difficult to unmask ransomeware attackers.
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Name Resolution and Routing Attacks

Definition (name resolution attack)

A name resolution attack attempts to modify name resolution services to attack users
of name resolution services.

Definition (routing attack)

A routing attack attempts to modify the flow of information in order to obtain access to
information or to install a man-in-the-middle.
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Attacks on name resolution systems and routing attacks aim at directing communication flows to mali-
cious services or to pass them through malicious systems. They are usually a part of a bigger attack.
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Malicious Macro Attacks

Definition
A malicious macro attack (also called a macro virus) uses a macro embedded in some
innocent document to install malware on systems opening the document and executing
the macro without supervising its execution.

Examples

• Malicious macros distributed with office documents have been used for years to
break into systems.

• More recent versions of office software disables the execution of macros by default.
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Microsoft Office products have had a long track record of carrying macro viruses in order to gain initial
control of remote systems. Macros were usually written Visual Basic and had full access to the system’s
file systems.

While Microsoft Office products are well known for macro viruses, similar problems exist in other docu-
ment formats. Modern versions of the Portable Document Format (PDF) can contain JavaScript code,
which may be used to launch attacks via a PDF reader.
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Phishing Attacks

Definition
A phishing attack attempts to steal sensitive information by masquerading a malicious
resource as a reputable resource.

Examples:

• Email phishing attacks tricking individuals into giving away sensitive information

• Spear phishing attacks use contextual information to hide the phishing attack

• Whaling attacks use spear phishing techniques to target senior executives

• Voice phishing attacks make automated phone calls to large numbers of people

• Calendar phishing attacks send fake calendar invitations with phishing links

• QR code phishing attacks use QR codes to direct users to phishing sites
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Phishing attacks originated in the 1990s and they are still a very effective way to obtain initial access
to accounts and systems. While large scale phishing campaigns are often relatively easy to identify for
informed people, they are often successful with less informed people.

Spear phishing attacks can be highly successful if an adversary has the resources to prepare a spear
phishing attack well. If an adversary knows email communication threads and the context of email ex-
changes, then it is possible to produce phishing emails that are likely accepted as an authentic email.
Given the recent progress in AI technology, it can be expected that spear phishing attacks will become
cheaper and better in the future. Deploying technology to digitally sign email messages (or communi-
cation in general) is a means to protect against phishing attacks.
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Social Engineering Attacks

Definition (social engineering attack)

A social engineering attack is the psychological manipulation of people into performing
actions or divulging confidential information.

Examples:

• An attacker sends a document that appears to be legitimate in order to attract the
victim to a fraudulent web page requesting access codes (phishing).

• An attacker pretends to be another person with the goal of gaining access
physically to a system or building (impersonation).

• An attacker drops devices that contain malware and look like USB sticks in spaces
visited by a victim (USB drop).
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Social engineering attacks exploit that humans can be persuaded to give away credentials or other
confidential information. Compared to equivalent technical attacks, they are often cheap and highly
effective.

Social engineering attacks often start with creating a new situation in which people can be tricked to
reveal credentials. Some examples:

• An adversary posts a sign that the phone number of the helpdesk has changed and when people
call the new fake number, you persuade them to give the helpdesk credentials.

• An adversary masquerades as a mechanic to perform maintenance on air conditioning systems
in order to get access to a server room.

• An adversary contacts a person under the name of an authority to convince the person to carry
out a certain task.

• An adversary triggers a fire alarm in order to gain access to office computers that were left unat-
tended.

• An adversary explores the courtesy of a person to gain access to a building.

Social engineering attacks usually exploit the following human emotions:

• Fear: Victims are maded to believe that not acting will have negative consequences.

• Greed: Victims exploit a desire for material gain.

• Curiosity: Victims perform an action against the rules out of a desire of exploration evident in
humans.

• Helpfulness: Victims perform a voluntary action intended to help others.

• Urgency: Victims are put under time pressure in order to decide quickly without fully considering
the consequences of a decision.
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Part III

Security by Design

Security by design is about considering security aspects of software during all phases of a software
development project instead of adding security mechanisms late in the development process. This part
first defines security by design and which security aspects need to be considered in the different phases
of a software project. It then discusses ten security design principles.

By the end of this part, students should be able to

• explain the concept of security by design;

• outline security aspects to address in the different phases of a development project;

• describe the principle of least privilege;

• explain the principle of separate responsibilities;

• outline the principle to trust cautiously;

• describe the importance of simplicity;

• explain how to properly audit sensitive events;

• highlight the importance of secure defaults and failing securely;

• motivate why relying on obscurity is problematic;

• outline the importance of defense in depth

• explain the dangers of inventing new security solutions;

• characterize the importance of focusing on securing the weakest links.
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Security by Design

Definition (Security by Design)

Secure by design, in software engineering, means that software products and capabilities
have been designed to be foundationally secure.

• The goal of security by design is to ensure that security is an inherent part of a
product, rather than being added on as an afterthought.

• A software development project should not just concentrate on modeling data and
operations on data but also dealing with authenticity and integrity of data and who
is allowed to access and modify data.
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Further online information:

• YouTube: Cybersecurity Architecture: Five Principles to Follow (and One to Avoid)
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Software Life Cycle Model

1. Beginning of Life

1.1 Idea
1.2 Concept
1.3 Development
1.4 Prototype
1.5 Launch
1.6 Manufacture

2. Middle of Life

2.1 Distribution
2.2 Use
2.3 Service

3. End of Life

3.1 Recycle

• Security by design stresses the importance to consider security aspects in all phases
of a software life cycle.

• Retrofitting security is complicated and costly and often leads to solutions that are
complex and thus hard to fully understand.
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Below are some security related questions and requirements that should be considered during the
different phases of the software lifecycle [22]:

1.1 Idea

– Where will the product be used?

– What are the security requirements demanded by the market?

1.2 Concept

– What are the data protection requirements?

– What are legal requirements and constraints?

– Which threats exist and how can their impact be controlled?

– Which security requirements exist for 3rd party components or suppliers?

– What is needed to detect security attacks and which data is necessary for forensics?

1.3 Development

– Which software architecture matches the security requirements?

– Use best current security practice for the implementation.

– Use state of the art tools for an automated security analysis of the code.

– Verify that components provided by third parties meet the security requirements.

– Ensure the integrity of development tools.

1.4 Prototype

– Automatic detection of weaknesses and penetration tests.

1.5 Launch

– Establish processes for regular security assessment of software components and procedures
for maintenance, support, and patch management.

– Provide documentation how to operate the product and clearly document how long security
updates will be provided.
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1.6 Manufacture

– Collect all information necessary for tracing security issues and for supporting vulnerability
analysis, such as versions and serial numbers of all deployed software and hardware com-
ponents (firmware, operating system, libraries).

– Protection of the production environment to ensure that no manipulated components may
influence the product.

2.1 Distribution

– Distribution and deployment of software components must ensure that the integrity of the
software components is maintained.

– Provide documentation detailing the appropriate and secure operation of the software prod-
uct. This documentation may need to be updated regularly during the support lifetime of the
product.

2.2 Use

– Operate vulnerability management services in order to react to discovered vulnerabilities in
a timely manner.

2.3 Service

– Provide communication channels to inform customers in a timely manner about security prob-
lems and the availability of security patches.

– Implement processes to provide information about security or data protection incidents to
authorities according to legal requirements.

– Define a service process to clear any customer related data if hardware and/or software is
returned.

3.1 Recycle

– Ensure that customers are informed in time about the end of support and provide information
about the consequences on the security of the system and the data processed by the system.

– Provide documentation how the hardware and software can be shutdown and disposed
safely. This includes instructions how to delete sensitive information (keys, personal data)
securely and how to dispose physical hardware components properly.
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9 Security in the Software Lifecycle

10 Ten Security by Design Principles
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Eoin Woods summarized ten security design principles. We present them here as they provide helpful
guidance for software engineers and system designers how to build systems that have a high resilience
against security attacks. Eoin Woods has given several presentations about these ten security design
principles, you can find several of them recorded on YouTube.

Further online information:

• YouTube: Secure by Design - Security Principles for the Working Architect - Eoin Woods
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Principle 1: Least Privilege

Definition (least privilege)

Limit privileges to the minimum necessary for a given context.

Motivation:

• Broad privileges allow malicious or accidental access to protected resources

Example:

• Execute server processes with exactly the privileges they require and not more:

- Execute the processes using a restricted account
- Limit access to the filesystem
- Limit access to network resources
- Limit the system calls that can be used
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A simple implication of this principle is that system administrators should never execute regular tasks
like reading emails or searching for information on the Internet with administrator privileges, including
accounts that can easily obtain administrator privileges.
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Principle 2: Separate Responsibilities

Definition (separate responsibilities)

Separate and compartmentalise responsibilities and privileges.

Motivation:

• Limit the impact of successful attacks and achieve control and accountability

Example:

• A software module responsible for payments should not also be responsible for
placing orders
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A software architecture following this principle may use a technique called privilege separation to sepa-
rate code requiring special privileges from code that does not require special privileges. The idea is that
code executing with special privileges should be small compared to code implementing the rest of the
functionality so that privileged code can be effectively reviewed for security vulnerabilities. Implementing
privilege separation may require to choose a software architecture supporting privilege separation.
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Principle 3: Trust Cautiously

Definition (trust cautiously)

Assume unknown entities are untrusted and have a clear process to establish trust.

Motivation:

• Security problems are often caused by inserting malicious intermediaries in
communication paths.

Examples:

• Do not accept network connections from untrusted endpoints.

• Verify the identity of unknown people (do not get fooled by how they look)

• Do not plug USB devices of unknown origin into a computer.

• Do not execute code originating from an unknown source.
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Trusting cautiously can be tricky in the real world since it is often necessary to make informed decisions.
Smart adversaries may exploit this by forcing people into situations where decisions need to be taken
under pressure.

There has been quite some research on making computer programs managing trust metrics against
other computer programs and system components. This seems to be simple at first sight but appears
to be tricky to get right.
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Principle 4: Simplest Solution Possible

Definition (simplest solution possible)

Actively design for simplicity, avoiding complex failure modes, implicit behaviour,
unnecessary features, ...

Motivation:

• Complex systems are hard to analyze and they may have complex failure modes or
implicit behaviour.

Examples:

• A logging system should not have a need to dynamically load code.

• A configuration language does not need to be Turing complete.

• A document format does not need to include executable code.
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Keeping systems simple is often harder than making them complex. There is a natural desire to add
features and hence it requires a serious effort to keep a system clean and simple.
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Principle 5: Audit Sensitive Events

Definition (audit sensitive events)

Record all security significant events in a tamper-resistant store.

Motivation:

• Auditing logs are useful for monitoring the operation of a system and
reconstructing what happened during a security incident.

• For certain operations, it may be necessary to be able to proof legally that an
auditing log is complete and authentic.

Examples:

• Logging auditing information on write-only storage systems.

• Duplicating auditing information to increase availability.
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It may be useful at this point to remember earlier principles. A good auditing system needs to provide
a function to record events, it should not provide a function to read or even worse modify recorded
events. The reason is that auditing information is also of high interest for malicious parties as it can
reveal information how systems and services operate.
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Principle 6: Secure Defaults and Fail Securely

Definition (secure defaults and fail securely)

Force changes to security sensitive parameters (never use default values) and think
through failures to make them secure but recoverable.

Motivation:

• Devices with default credentials (passwords) still are a problem.

• Security mechanisms may be downgraded through failures.

• Failures during privileged operation may leave systems in a vulnerable state.

Examples:

• Home routers shipped with a default administrative password.

• Temporary files left behind after a failure leaking information.
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We still have vendors shipping home routers with the default credentials printed on the back of the
devices and the software not strongly forcing users to change them.
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Principle 7: Never Rely on Obscurity

Definition (never rely on obscurity)

Assume attacker with perfect knowledge since this forces secure system design.

Motivation:

• Sooner or later someone will accidentally or on purpose find hidden things.

Examples:

• Using simple substitution rules to create passwords from ordinary words.

• Using port knocking sequences to open administrative remote access to systems.

• Kerckhoff’s principle states that security of a cryptographic system should not rely
on the secrecy of the algorithm.
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The key here is that obscurity does not provide security. That said, obscurity may still have an opera-
tional value. For example, consider a server on the Internet that needs to provide remote administrative
access via SSH. Public IP addresses are always scanned for SSH services and this can get annoying.
By deploying port knocking, i.e., a firewall opens SSH access only if a certain sequence of port numbers
have been contact before, a large number of these scans can be defeated. Deploying port knocking
hence is operationally useful but the key is that the security of the SSH access should not rely on port
knocking. This means the SSH access needs to be properly secured (e.g., by enforcing strong public
key authentication mechanisms) so that it access is safe even if no port knocking is active. In other
words, obscurity can operationally help by challenging attackers but the security of a service should
never depend on obscurity.

More recently, an “advanced” form of security through obscurity has become attractive, so called moving
target defense. From a security point of view, such mechanisms must be seen as a comlementary
element to improve resilience of a system but not as a prime mechanism to provide security.
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Principle 8: Defense in Depth

Definition (defense in depth)

Do not rely on single point of security, secure every level, stop failures at one level from
propagating.

Motivation:

• Systems do get attacked and humans make mistakes, hence it is necessary to plan
for such situations and to minimize the impact.

Examples:

• Multiple levels of access control (with different granularity):

- Access control within a database backend
- Access control at the file system level
- Access control at the virtual machine level
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Depending on a single security mechanisms leads to catastrophic failures if the security mechanisms
fails. Hence it is important to investigate for each security mechanism what happens if the mechanism
fails or can be circumvented.
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Principle 9: Never Invent Security Technology

Definition (never invent security technology)

Do not create your own security technology, always use proven technology and
components.

Motivation:

• Creating good security technology is difficult and requires the cooperation of many
people to eliminate design flaws.

Examples:

• Wireless security technology has a long history of failed attempts

• Implementing crypto algorithms is hard (e.g., prevention of side channels)
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There are of course people specializing on inventing security technology and this is no argument to
stop this value work. This principle is essentially just a strong warning that naive approaches to invent
security technology are often doomed to serious failures. The word “never” is thus a bit too strong (it
almost always is) but it conveys the message well.
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Principle 10: Secure the Weakest Link

Definition (secure the weakest link)

Find the weakest link in the security chain, strengthen it, and then repeat.

Motivation:

• Perfect security does not exist, security is a continuous process.

• By constantly improving the weakest link, the security of a system improves
efficiently.

Examples:

• Encrypted communication but cleartexts stored in a database.

• Security access from the outside while leaving the doors wide open inside.

• Providing access to accounts without a plan how to terminate access.
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Perhaps the most important point here is that security requires a continuous process. Security is not
black and white, a system only reaches a certain level of security and a continuous effort is required to
keep the level or to further improve it.

The problem is that security is also a cost factor and the level of security and its business value is often
difficult to assess. Companies sometimes only realize that they did not invest enough into security when
major security events take place.
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Part IV

Control Flow Integrity

The part discusses techniques to deal with buffer overflows that aim to divert the control-flow of appli-
cations. These techniques are commonly known under the term control-flow integrity.

By the end of this part, students should be able to

• explain the concept of control-flows and control-flow integrity;

• construct a control-flow graph of a simple program;

• describe the protection provided by a control-flow guard;

• outline the protection provided by pointer authentication codes;

• illustrate the protection provided by a shadow stack.
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Several techniques to exploit buffer overflows were developed in the 1990s and this led to research trying
to safeguard systems against buffer overflows that try to divert the normal execution of a program into a
malicious execution. The term control-flow integrity was coined by a paper by Martı́n Abadi, Mihai Budiu,
Úlfar Erlingsson, and Jay Ligatti [23] published in 2005. In the following years many techniques were
developed to observe or guarantee the integrity of the control-flow of a program during its execution.
Since they all come with a certain overhead, several companies started to develop hardware support
for control-flow integrity techniques.

While control-flow integrity mechanisms made it in less than 20 years from first research efforts into
deployed hardware support and they help to prevent a number of attacks, they come with a certain cost
as they had to be designed to be backwards compatible. Furthermore, recent research has shown that
it is possible for large programs to make then do things they were not designed to do while staying within
the constraints of control-flow integrity mechanisms. One such approach is called control-flow bending
[24].
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Control Flow

Definition (control flow)

The control-flow of an imperative program is the order in which instructions or function
calls are executed.

• The control-flow of a program can be visualized in a control-flow graph.

• At the machine instruction level, we have (i) sequences of instructions (nodes) and
(ii) jumps between them (edges).

• Some jumps are conditional (so called branching points).

• Some jumps are function calls, i.e., the program eventually returns and continues.

• The control-flow graph of a program is usually known at compilation time.
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Control-flow graphs may exist at different levels of abstraction. For example, you can represent the
source code of an imperative programming language as a control-flow graph where each statement
and each branching point becomes a node and edges represent the jumps between the statements.

We usually focus on the control-flow graph representing the machine instructions generated by a com-
piler. An optimizing compiler will transform the control-flow graph representing the source code into an
(optimized) control-flow graph that is being executed.

Listing 11 shows an implementation of a fizzbuzz program that we use in the following to explain control-
flow integrity concepts. The program echoes its command line arguments, replacing every positive
integer number with the word Fizz if the number is divisible by 3, with the word Buzz if the number is
divisible by 5, and the word FizzBuzz if the number is both divisible by 3 and 5.
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1 # include <stdio.h>
2 # include <stdlib.h>

3

4 static void fizzbuzz(int n)

5 {

6 if (n % 15 == 0) {

7 printf("FizzBuzz");

8 } else if (n % 5 == 0) {

9 printf("Buzz");

10 } else if (n % 3 == 0) {

11 printf("Fizz");

12 } else {

13 printf("%d", n);

14 }

15 }

16

17 static void echo(char *s)

18 {

19 int n = atoi(s);

20 if (n <= 0) {

21 printf("%s", s);

22 } else {

23 fizzbuzz(n);

24 }

25 }

26

27 int main(int argc, char *argv[])

28 {

29 for (int i = 1; i < argc; i++) {

30 char *separator = (i < argc-1) ? " " : "\n";

31 echo(argv[i]);

32 printf("%s", separator);

33 }

34 return EXIT_SUCCESS;

35 }
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Control Flow Integrity

Definition (control-flow integrity)

Techniques ensuring control-flow integrity prevent attacks diverting a program’s
execution from the programs intended control-flow graph.

• Defense against attacks overwriting return addresses

• Defense against attacks overwriting function pointers

• No defense against attacks that do not change a program’s control-flow

• Jumps are edges between sequences of machine code that do not return.

• Calls are edges between functions where the callee normally returns to the callsite.

Jürgen Schönwälder (Constructor University) System Security: Control Flow Integrity CC-BY-NC-ND February 5, 2026 84 / 195

Below on the left is the function call graph of the fizzbuzz program. Nodes represent functions and
edges represent possible function calls. The call graph has been produced by the llvm compiler and
its tool chains. It is the result of a direct translation of the C code into the compiler’s intermediate
representation. Enabling optimizations will let the compiler inline the functions echo and fizzbuzz,
resulting in a simpler function call graph.

Call graph: fizzbuzz.ll

main

echo

printf

atoi fizzbuzz
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On the right, you see the control-flow graphs of the three functions. Nodes represent sequences of
instructions and arrows possible jumps between these sequences of instructions.
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Control Flow Integrity Details

Definition (forward-edge cfi)

Forward-edge control-flow integrity verifies jumps and function calls.

Definition (backward-edge cfi)

Backward-edge control-flow integrity verifies the returns of function calls.

Definition (direct and indirect jumps)

A control transfer where the destination is directly known is a direct jump. Control
transfers that follow addresses (pointers) stored in memory are called indirect jumps.
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The distinction between forward-edge and backward-edge control-flow integrity is important since dif-
ferent techniques may be used to realize forward-edge and backward-edge control-flow integrity.

Some control-flow integrity mechanisms are fine grained, protecting specific addresses, while others
are coarse grained, protecting only address ranges. From a security point of view, it is clear that fine
grained protection is desirable but fine grained protection usually means larger overhead.

Some control-flow integrity mechanisms only protect the destination of a jump or call or return while
other protect the combination of the source and the destination of a jump or call or return.
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Control Flow Guard

• Control-flow guard is a forward edge cfi mechanism.

• Check a bitmask whether the destination is a valid jump/call target.

• The bitmask of valid jump/call targets is created when a program is compiled.

• The granularity of the bitmask is a concern (every address is pretty costly).

• The bitmask must be kept protected.
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A control-flow guard mechanism has been implemented in the llvm/clang compiler toolchain. There is
also hardware support in newer Intel processors (Intel CET) [25] and it is used in modern versions of
Windows.
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Pointer Authentication Codes
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Pointer Authentication Codes

• Not all bits of an address are used and these bits can carry a pointer signature.

• A pointer (address) is signed with a key and the resulting authentication code is
stored in “unused” bits.

• Authentication codes are verified at runtime.

• Attacker would need the secrect key to create valid pointers (so store the key in a
protected register)

• Guessing authentication codes is possible, feasibility depends on the number of bits
available
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A weak aspect of pointer authentication codes is the relatively small number of bits available. Apple
silicon ships with hardware support for pointer verification, originally described by Qualcom [26].
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Shadow Stacks
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Shadow Stack

• Shadow stacks are a backward edge cfi mechanism.

• Copy return addresses into a protected shadow stack

• Validate return address against the shadow stack on function return

• Shadow stack must be protected
• placing the shadow stack between guard pages
• using a special hardware enforced memory protection mechanism
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The introduction of shadow stacks is driven by the need to maintain backwards compatibility. For a
clean slate instruction set architecture (ISA) design, one could consider to introduce separate data and
call stacks to enforce a clear separation, also protecting the stack from potentially leaking information
where machine code is loaded into the address space of a process.

Thie RISC-V project is working on specifications to add shadow stacks and landing pads to the RISC-V
technology [27].
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Part V

Isolation Mechanisms

This part looks at mechanisms to isolate programs during their execution. Isolation essentially aims
at granting programs access to the resources they need but nothing more and to execute programs
with least privileges. Good isolation limits the attack surface and this helps to harden system against
attacks. In other words, good isolation helps to limit or control the damage that can happen if a system
is attacked.

By the end of this part, students should be able to

• recall the Lampson authorization model;

• describe the difference between access control lists and capabilities;

• explain the terms discretionary, mandatory, and role-based access control;

• model permissions using the POSIX discretionary access control model;

• outline the idea behind Linux Security Modules;

• describe the AppArmor system for securing applications;

• configure the SELinux mandatory access control system;

• implement programs using Linux secure computing facilities to restrict system calls;

• configure generic sandboxes such as Linux firejail;

• understand the security of Linux containers.
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Isolation

• Isolation is a fundamental technique to increase the robustness of computing
systems and to reduce their attack surface.

• Isolation can be achieved in many different layers of a computing system:
• Physical (e.g., preventing physical access to compute clouds)
• Hardware (e.g., memory management and protection units)
• Virtualization (e.g., virtual machines, containers)
• Operating System (e.g., processes, users, devices, files)
• Network (e.g., firewalls, virtual LANs, virtual private networks)
• Applications (e.g., microservices, transaction isolation in databases)

• Isolation should be considered in during system design.

• Isolation is also relevant during the deployment of computing systems.
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It is important to consider isolation not only during the design of software but also when computing sys-
tems and software gets deployed. Systems that have been designed with isolation in mind tend to resist
attacks much better compates to systems that lack a proper isolation. The reason is that a successful
attack on a components can easily affect other parts of the system if there are no effective isolation
mechanisms in place. A downside of isolation is that maintaining proper isolation makes operational
processes often more complicated and expensive. Similarly, isolation may come with a certain amount
of overhead. A paper discussing several system-level security isolation techniques is [28].
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Authentication, Authorization, Auditing

Definition (authentication)

Authentication is the act of proving an assertion, such as the identity of a computer
system user.

Definition (authorization)

Authorization is a function deciding whether a principal can access a certain resource in
a certain way.

Definition (auditing)

Auditing is the process of collecting and storing evidence about authentication and
authorization decisions.
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• Authentication: Who is requesting an action?

Basic authentication at the system level is typically implemented using passwords, which is known
to be problematic. On mobile devices, we meanwhile often find biometric authentication mecha-
nisms. Operating system access over the network is often using asymmetric cryptographic key
mechanisms. In Unix-like systems, the authentication resolves to a user identifier (uid) and a group
identifier (gid) associated with processes executing in user space. The kernel makes an important
distinction between the user identifier (uid) and the effective user identifier (euid), which can be
different. Similarly, every process has a group identifier (gid) and the effective group identifier
(egid).

• Authorization: Is a principal allowed to execute an action on this object?

Authorization answers the question which operations are allowed against an object. This question
is answered using an authorization policy, also called an access control policy. The specification
of authorization policies is complex and there are different approaches to specify authorization
policies.

• Auditing: Record evidence for decision made in an audit-trail.

Auditing is used to keep a log (an audit trail) of the decisions made. This is essential for debugging
purposes but also for forensics in case a system was attacked or information has been leaked to
principals who should not have had access to the information. A good audit trail is extremely im-
portant but it also contains highly sensitive information. An audit trail also needs to be safeguarded
against modifications since advanced attacks can try to modify the audit trail to make forensics
more difficult.

103



Authentication

Definition (authentication)

Authentication is the process of verifying a claim that a system entity or system
resource has a certain attribute value.

• An authentication process consists of two basic steps:

1. Identification step: Presenting the claimed attribute value (e.g., a user identifier) to
the authentication subsystem.

2. Verification step: Presenting or generating authentication information (e.g., a value
signed with a private key) that acts as evidence to prove the binding between the
attribute and that for which it is claimed.

• Security services frequently depend on authentication of the identity of users, but
authentication may involve any type of attribute that is recognized by a system.
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This definition is taken from RFC 4949 [29]. While we often think about the authentication of “users”,
there are many more entities that need authentication. Here are some examples:

• A device plugged into a computer may have to authenticate itself against the operating system.

• A car (that is the computer inside a car) may have to authenticate itself against a charging station.

• A payment card has to authenticate itself against a cashing system (and perhaps a cashing system
has to authenticate itself against a payment card).

• An front-end application may have to authenticate itself against a backend service.

While we often think of authentication to be a one-time activity for a certain computer usage, it can
be useful to think of authentication as a continuous process for longer lasting activities. Continuous
authentication sometimes tries to assess user (or entity) behavior on an ongoing basis.
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Lampson Model
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• This basic model works well for modeling static access control systems.

• Dynamic access control systems allowing dynamic changes to the access control
policy are difficult to model with this approach.
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The original paper by Lampson [30] uses a slightly different terminology.
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Subjects, Objects, Rights

• Subjects (S): set of active objects
• processes, users, . . .

• Objects (O): set of protected entities
• files, directories, . . .
• memory, devices, sockets, . . .
• processes, memory, . . .

• Rights (R): set of operations a subject can perform on an object
• create, read, write, delete . . .
• execute . . .
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Following Lampson’s model, we distinguish between subjects that are accessing objects regulated by
their access rights. Some typical examples:

• A Unix process (a subject) is attempting to open a file for reading (an object) and it needs to have
read permissions to access the file.

• A computing system (a subject) is attempting to access an SSH service on a remote computer
(an object) and it needs to have permission to send data to the SSH port on the remote system.

• An application running on a mobile phone (a subject) is trying to lookup an address in the list
of contacts stored on the device (an object) and it needs to have the permissions to access this
database.
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Lampson’s Access Control Matrix

Definition (access control matrix)

An access control matrix M consists of subjects si ∈ S , which are row headings, and
objects oj ∈ O, which are column headings. The access rights ri ,j ∈ R∗ of subject si
when accessing object oj are given by the value in the cell ri ,j = M[si , oj ].

• Another way to look at access control rights is that the access rights r ∈ R∗ are
defined by a function M : (S × O) → R∗.

• Since the access control matrix can be huge, it is necessary to find ways to express
it in a format that is lowering the cost for maintaining it.
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An access control matrix is great in theory but difficult in practice since the product of all subjects against
all objects is huge. Hence, it is necessary to find representations that reduce the size of the access
control matrix and which makes the management of access rights feasible for a security administrator.
Two widely used approaches are access control lists and capabilities.

Here is an example access control matrix:

moodle wifi printer

Alice access print
Bob student access
Carol instructor access print, scan
Charlie access scan
Dave student access
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Access Control Lists

Definition (access control list)

An access control list represents a column of the access control matrix. Given a set of
subjects S and a set of rights R , an access control list of an object o ∈ O is a set of
tuples of S × R∗.

• Example: The inode of a traditional Unix file system (the object) stores the
information whether a user or a group or all users (the subject(s)) have
read/write/execute permissions (the rights).

• Example: A database system stores for each database (the object) information
about which operations (the rights) users (the subjects) can perform on the
database.
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Typical access control list design issues:

• Who can define and modify ACLs?

• Does the ACL support groups or wildcards?

• How are contradictory ACLs handled?

• Is there support for default ACLs?

• How have changes of ACLs propagated?

ACLs can become very complicated and difficult to manage. A good example are network packet filters
where the ACL consists of long chains of rules that over time become very difficult to maintain.
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Capabilities

Definition (capabilities)

A capability represents a row of the access control matrix. Given a set of objects o and
a set of rights R , a capability of a subject s is a set of tuples of O × R∗.

• Example: An open Unix file descriptor can be seen as a capability. Once opened,
the open file can be used regardless whether the file is deleted or whether access
rights of the file are changed. The capability (the open file descriptor) can be
transferred to child processes. (Note that passing capabilities to child processes is
not meaningful for all capabilities.)

• Example: The Linux system has pre-defined capabilities like CAP SYS TIME or
CAP CHOWN that partition the rights of the root user into more manageable smaller
capabilities.

Jürgen Schönwälder (Constructor University) System Security: Isolation Mechanisms CC-BY-NC-ND February 5, 2026 101 / 195

Capabilities are like tickets that allow a subject to do certain things. It is essential that subjects cannot
alter their capabilities in an uncontrolled way. Operating systems therefore typically maintain capabilities
in kernel space. The file descriptor, for example, is maintained in the kernel and it cannot be changed
to refer to a different file without the involvement of the kernel.

Typical design issues for capabilities:

• How are capabilities stored?

• How are capabilities protected?

• Can capabilities be passed on to other subjects?

• Can capabilities be revoked?
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Access Control Lists versus Capabilities

• Both are theoretically equivalent (since both at the end can represent the same
access control matrix).

• Capabilities tend to be more efficient if the common question is “Given a subject,
what objects can it access and how?”.

• Access control lists tend to be more efficient if the common question is “Given an
object, what subjects can access it and how?”.

• Access control lists tend to be more popular because they are more efficient when
an authorization decision needs to be made.

• Systems often use a mixture of both approaches.
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Discretionary, Mandatory, Role-based Access Control

• Discretionary Access Control (DAC)
• Subjects with certain permissions (e.g., ownership of an object) can define access

control rules to allow or deny (other) subjects access to an object.
• It is at the subject’s discretion to decide which rights to give to other subjects

concerning certain objects.

• Mandatory Access Control (MAC)
• System mechanisms control access to objects and an individual subject cannot alter

the access rights.
• What is allowed is mandated by the security policy implemented by the security

administrator of a system.

• Role-based Access Control (RAC)
• Subjects are first mapped to a set of roles that they have.
• Mandatory access control rules are defined for roles instead of subjects.
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Unix filesystem permissions are an example of discretionary access control. The owner of a file controls
who is allowed to access the file in which way.

Mandatory access control is frequently used by security critical systems to enforce access control rules.
Early forms of mandatory access control were often using multi-level security systems, where objects
are classified into security levels and subjects are allowed access to objects in the security level asso-
ciated with the subject.

Role-based access control models try to simplify the management of access control rules. The basic
idea is that subjects are first mapped into roles and access control rules are defined for certain roles.
For example, access rights for certain documents may be given to the role of a study program chair
instead of specific persons. This has the benefit that the person taking the role of a study program chair
can be easily replaced without having to redefine all access control rules for all documents.
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Operating System Isolation Services

• Basic isolation services provided by operating system kernels:
• Isolation of process memory via virtual memory
• Isolation of storage devices via filesystems
• Isolation of network devices via sockets
• Isolation of keyboard, pointer, display devices
• Isolation of pluggable devices

• These are coarse grained isolation mechanisms

• More fine grained isolation mechanisms are system specific
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We are not going to review how these isolation mechanisms work. Please review standard educational
materials on operating systems to refresh your understanding how mappings of logical address spaces
to physical address spaces work, how filesystems are implemented on top of raw block devices, how the
socket API abstraction provides interfaces to network protocol stacks, or how devices are represented
and exposed to processes.
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POSIX User and Group IDs

Definition (user ID, group ID)

A user ID (UID) is a positive integer assigned to a user of a POSIX system. A group ID
(GID) is a positive integer assigned to a group on a POSIX system.

• A user refers to an account on the system and accounts may represent software
services.

• Every user is a member of one or more groups.

• The UID 0 has a special meaning and refers to the root user, an account with
special and typically unlimited privileges.

• The UID 65534 and the GID 65534 are commonly reserved for nobody, a user and
a group with no system privileges.
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POSIX Process User and Group IDs

Definition (real user ID, real group ID)

The real user ID (ruid) and the real group ID (rgid) of a process is the UID and the GID
of the user who invoked a program.

Definition (effective user ID, effective group ID)

The effective user ID (euid) and the effective group ID (egid) of a process are used to
check permissions.

Definition (saved user ID, saved group ID)

The saved user ID (suid) and the saved group ID (sgid) of a process are a UID and GID
pair that are (temporarily) not used to check permissions.
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A regular program executes with the euid and egid set to the ruid and rgid, which are derived from the
uid and gid of the caller.

In some situations, it is necessary to execute a program with special permissions. To accomplish this,
a program may be installed to run with the permissions given to the program. In this case, the euid and
egid will be different from the ruid and rgid, which are still derived from the uid and gid of the caller.

The Unix model was that for actions requiring special privileges, small programs are written that carry
out the action and nothing else. If the programs are small, they can be carefully reviewed and checked
for security problems.

In certain situations, a process may want to reduce its privileges temporarily. This can be accomplished
by saving the current euid and egid into the suid and sgid and then setting different euid and egid values,
restoring the original settings later.
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POSIX File System Owner and Group IDs

Definition (owner, group, other)

Every file system object has an associated owner (a UID) and group (a GID). Separate
permissions (read, write, execute, . . . ) are associated with the owner of a file system
object, the members of a group of a file system object, and all others.

Definition (effective permissions)

The effective permissions are determined based on the first match in the order of user,
group then others properties of a file system object.

• The owner of a file system object has the right to set the permissions.

• More fine grained access control lists are defined in POSIX 1003.1e.
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The permissions associated with file system objects vary between implementations but the main ones
are:

r Read the content of files or the names of a directory.

w Write the content of files or modify a directory, which includes creating, deleting, and renaming
files.

x Execute a file or traverse into a directory.

s Execute a file and set the effective user ID and/or the effective group ID. An group’s s permission
on a directory sets the default group for new files to the directory’s group.

t On a directory, the sticky permission prevents users from renaming, moving or deleting contained
files owned by users other than themselves, even if they have write permission to the directory.

The POSIX file system access control lists extension enables more fine grained access policies for file
system objects. POSIX ACL entries have the form <type>:<qualifier>:<permissions> where type
can be either user or group or other, the qualifier may be a name or empty, and the permissions are a
combination of r (read), w (write), and x (execute).

A regular file owned by the user joe and the group users with permissions rw-r----- has the extended
access control list:

$ getfacl joe

# owner: joe

# group: users

user::rw-

group::rw-

other::r--

The added feature of POSIX ACLs is that there can be several user specific and/or group specific
entries:

user:bob:rw-

group:dev:rw-

Additional mask entries are used to provide a backwards compatible interpretation of extended access
control lists. If a mask is present, then it defines the maximum access and the value is shown as the
group permissions. Individual user and group permissions are a bit-wise logical and of the permissions
with the mask. Hence, individual user or group perxmissions can never exceed the mask permissions.
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POSIX Permission Model

• The kernel acts (via its system calls) as a guard checking which process (given its
euid and egid properties) has access permissions against file system objects.

• For file systems, the access control lists are stored as part of the file system objects.

• Access control lists are discretionary, i.e., the owner of a file system object controls
the access rights.

• The powerful root user can overwrite and change all permissions.

• The permission model is coarse grained, applications often have permissions that
they do not need to do their work.
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The original POSIX security model works reasonably well for simple end user systems or simple server
systems. For more complex software systems, a more fine grained permission model is desirable that
restricts more clearly which resources a process can use and which supports a mandatory access
control model in addition of a discretionary access control model.

Operating system implementations often have additional system specific mechanisms. For example,
several Linux file systems support file system attributes which can further restrict operations on files,
like making a file immutable or append-only (see chattr, lsattr).
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Linux Security Modules

• There is wide agreement that mandatory access control is necessary in certain
deployment scenarios.

• There is no agreement on a single solution to express mandatory access control
policies.

• As a consequence, the Linux kernel provides an internal API enabling kernel
programmers to write different security modules without requiring major changes
across the entire kernel.

• Specific security modules are built into the kernel and not loaded into the kernel.

• Users have to choose between special security modules (they do not compose).
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The common API consists of a collection of hook functions that can be registered by a specific security
module and which are called during the processing of system calls. The flow roughly looks like this for
the open system call):

1. System call entry point (sys_open)

2. Lookup of the inode

3. Validation and error checks

4. Discretionary access control checks

5. LSM access control check (if hook is registered)

6. Execution of the open system call functionality

Hook functions have access to the data provided to them, which is generally specific to the kind of hook
function and the system call itself.

An example hook for creating a task (a generalization of a process and a thread in Linux):

int (*task_alloc)(struct task_struct *task, unsigned long clone_flags);

Hook functions are called after processing discretionary access control rules and other sanity checks
have been performed. The rather long list of hooks can be found in the header file linux/lsm_hooks.h.
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Linux Security Modules Kernel View
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The Linux Security Modules (LSM) are essentially a collection of hooks called from functions imple-
menting system calls [31]. Different security models can use this infrastructure to implement mandatory
access control solutions. The maximum granularity of these solutions is limited by the set of LSM hook
functions and the data they can access.
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Application Armor (AppAmor)

• AppAmor restricts permissions of programs via security profiles.

• Security profiles are loaded into the kernel.

• Profiles are automatically applied to programs.

• Profiles implement mandatory access control.

• AppAmor is enabled by default on Ubuntu and Debian systems.
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AppArmor makes it relatively easy to write security policies for specific applications. Lets assume
that the user bob has written a program /home/bob/cat that should only be allowed to access the file
/home/bob/cat.c. This can be achieved by installing the following AppArmor policy home.bob.cat into
/etc/apparmor.d:

1 # Last Modified: Thu Mar 21 07:35:56 2024
2 include <tunables/global>

3

4 # vim:syntax=apparmor

5 # AppArmor policy for cat

6 # ###AUTHOR###

7 # ###COPYRIGHT###

8 # ###COMMENT###

9 # No template variables specified

10

11 /home/bob/cat {

12 include <abstractions/base>

13

14 deny @{HOME}/ rw,

15

16 owner /home/*/cat.c r,

17 }

After reloading the profiles (sudo systemctl reload apparmor.service), the program will fail with a
permission denied error on any files other than the one explicitly allowed.

Note that the policy is bound to the path. If alice is able to copy the program /home/bob/cat to
/home/alice/cat, then she can run /home/alice/cat without any restrictions.
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AppArmor Kernel View

AppArmor

p
ro

c
e
s
s

p
ro

c
e
s
s

p
ro

c
e
s
s

p
ro

c
e
s
s

p
ro

c
e
s
s

AA filesystem

processes

LSM

devices

networking

file systems

p
ro

c
e
s
s
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AppArmor identifies resources by paths, hence if files show up with other path names, the protection
may be lost. This loose binding of security policies can be seen as a significant disadvantage of AppAr-
mor since AppArmor policies assume that the integrity of the filesystem is preserved.

Some shell commands to work with AppArmor are summarized in the following table.

aa-status show status of the system policy
aa-complain set a security profile to complain mode
aa-enforce set a security profile to enforce mode
aa-disable disable a security profile
aa-easyprof easy generation of profiles
aa-exec confine a program with a specific security profile

Further online information:

• YouTube: Securing Applications with Apparmor
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Security Enhanced Linux (SELinux)

• SELinux was originally created by the NSA

• Part of the Linux kernel since 2003 (kernel version 2.6)

• Fedora was an early adopter of SELinux

• Android uses SELinux to enforce mandatory access control rules
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The fact that SELinux was originally developed by the NSA leads to controversial views. While the
origin can be debated, the implementation is open source and the design is well documented, which
likely matters more than the origin.

SELinux builds on a concept that is called type enforcement, which goes back to research published in
the 1980s [32].
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SELinux Kernel View
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The implementation in the kernel consists of the SELinux Security Server (SES) and the Access Vector
Cache (AVC). The LSM hook functions primarily interact with the AVC, which is filled by the SES when
necessary. The SEL file system exposes internals to processes running in user space.

One Debian 12.5 with SELinux enabled, the SEL file system is mounted on /sys/fs/selinux/. It can
be used, for example, to identify all classes supported by SELinux and their permissions.

1 $ ls /sys/fs/selinux/class/process/perms/
2 dyntransition getcap ptrace setkeycreate sigchld transition

3 execheap getpgid rlimitinh setpgid siginh

4 execmem getrlimit setcap setrlimit sigkill

5 execstack getsched setcurrent setsched signal

6 fork getsession setexec setsockcreate signull

7 getattr noatsecure setfscreate share sigstop
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SELinux Security Contexts

• All subjects (processes) and objects (files, directories, sockets, network ports, ...)
have a security context associated with them.

• The security context of a process is sometimes called a domain.

• A security context has three mandatory elements (the level is optional):

user:role:type[:level]

• The security context of processes and file system objects can be obtained using the
-Z option on some command line tools:

$ id -Z

$ ps -Z

$ ls -Z

• The security context of file system objects is stored in file system attributes.
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The SELinux community sometimes calls security contexts labels since they can be seen as security
labels that are attached to artifacts managed by an operating system kernel. The act of assigning
security contexts is then called labeling. In order to use SELinux, it is necessary that all relevant objects
are labeled.

Since security contexts are stored as attributes of file system objects, they form an inherent property of
a file system object. Hence, it does not matter how a program is called or where it is located in a file
system. Security labels also persist when files are copied.
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SELinux Allow Rules (Type Enforcement)

• SELinux is default deny, all access needs to be explicitely granted.

• An allow rule has four elements:

1. The type of the subject (the type of the security context of a process)
2. The type of the object being accessed (the type of the security context of an object)
3. The class of the object being accessed (file, directory, ...)
4. The permissions, i.e. the kind of access allowed to the object

• Example: A process with a security context type of user_t can read, execute, or
get attributes for a file object with a type of bin_t.

allow user_t bin_t: file { read execute getattr };
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Example (Debian 12.5):

1 $ ls -Z /bin/passwd
2 system_u:object_r:passwd_exec_t:s0 /bin/passwd

3 $ ls -Z /etc/shadow

4 system_u:object_r:shadow_t:s0 /etc/shadow

The program /bin/passwd has the type passwd_exec_t and it needs permissions to make changes to
the file /etc/shadow storing password hashes. To allow /bin/passwd to update /etc/shadow, an allow
rule like the following is necessary:

1 allow passwd_t shadow_t: file { ioctl, read, write, create, getattr,
2 setattr, lock, relabelfrom, relabelto,

3 append, unlink, link, rename };

Allow rules can quickly become complex and repetitive. Hence, the m4 macro processor is commonly
used to write allow rules in a more concise format. But then understanding allow rules requires some
familiarity with the macros.
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SELinux Domain Transitions

• A user shell with type user_t needs to transition to the type passwd_t when the
user runs the program /bin/passwd.

• This is allowed by domain transition rules:

allow user_t passwd_exec_t: file { getattr, execute };

allow passwd_t passwd_exec_t: file entrypoint;

allow user_t passwd_t: process transition;

• The first rule allows user_t to execute programs with type passwd_exec_t.

• The second rule states that passwd_t has entry point permissions on programs
with type passwd_exec_t. Entrypoint permissions mean that the security context
passwd_t may start with this file.

• The third rule says that a user_t process may transition into a passwd_t process.
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The rules shown above allow a domain transition, they do not cause or force a domain transition. To
force the domain transition, a type transition rule is needed:

type_transition user_t passwd_exec_t: process passwd_t;

On a Debian 12.5 system with SELinux enabled, regular users are unconfined users.

1 $ id -Z
2 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

SELinux policy rules allow processes running in unconfined domains almost all access. Users are as-
signed to domains using policy rules that can be easily optained by running sudo semanage login -l.

1 $ sudo semanage login -l
2

3 Login Name SELinux User MLS/MCS Range Service

4

5 __default__ unconfined_u s0-s0:c0.c1023 *

6 root unconfined_u s0-s0:c0.c1023 *

7 sddm xdm s0-s0 *

The set of existing user types can be found by running seinfo -u:

1 $ seinfo -u
2

3 Users: 7

4 root

5 staff_u

6 sysadm_u

7 system_u

8 unconfined_u

9 user_u

10 xdm

To turn an unconfined user bob to a confined user, the following command can be used:

1 $ semanage login -a -s user_u bob

Note that certain SELinux user types have certain default permissions, such as using sudo, which others
are more restricted.
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SELinux Users and Roles

• The following definitions define the role user_r and associate the type passwd_t
with it.

role user_r;

role user_r types passwd_t;

This definition specifies that passwd_t can exist in a context with the role user_r.

• A user may have multiple roles and roles may have multiple types.

user full_u roles { mgr_r, cashier_r };

role cashier_r types { cashier_t, cashier_register_t };

• While users and roles are an essential part of an SELinux security context, the
access control decision is based on the type enforcement logic.
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There are many commands to work with SELinux. The following table shows a selection of them.

sestatus status of the selinux system
seinfo query current active policy
setenforce set enforcement mode
sesearch search for policies
semanage alter policy
semodule managing policy modules
restorecon restore security contexts
chcon change security context

Writing SELinux policies is non-trivial, the learning curve is high. SELinux seems to be a good choice for
servers or other controlled and engineered systems, it appears to be less adequate on desktop systems
where users expect more flexibility.
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Lockdown Security Module

• Locks the kernel so that even root processes cannot change the kernel without
required cryptographic signatures.

• Information about kernel memory does not leak to user space anymore when
lockdown is active.

• Two different modes:
• Integrity mode:
• Confidentiality mode:

• Can be activated via a kernel boot parameter (e.g., lockdown=integrity)
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Work on the Linux lockdown security module was led by the Google engineer Matthew Garrett. It
became a part of the Linux kernel with version 5.4, released in November 2019.
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Landlock Security Module

• Sandboxes for user space processes.

• May be used by unprivileged processes to sandbox themselves.

• Access control rules are associated with (landlock) kernel objects (not with system
calls)

• Often used by generic tools to sandbox user space processes
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Landlock became part of the Linux kernel with version 5.13, released in June 2021. For further infor-
mation on its design, see [33].
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Berkeley Packet Filter (BPF)

• Human readable filter expressions are translated into (optimized) BPF programs
using a tiny compiler.

• Compiled BPF programs are loaded into the kernel.

• BPF programs are invoked on each received packet to decide whether to move
them for further analysis to user-space.

• The original BPF machine has the following components:
• An accumulator for all calculations
• An index register (x) allowing access to data relative to a certain position
• Memory for storing intermediate results

• All registers and memory locations are 32-bit wide
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The Berkeley Packet Filter (also called the classic BSD packet filter) was introduced by S. McCanne
and V. Jacobson [34] in 1993. It soon became widely used on Unix systems. With the emergence of
newer versions of the basic idea, the classic Berkeley Packet Filter is also referred to as cBPF. BPF is
best understood by looking at some examples:

• Select all Ethernet frames which contain IPv4 packets:

1 $ tcpdump -s 96 -d ip
2 (000) ldh [12] # load ethernet type field

3 (001) jeq #0x800 jt 2 jf 3 # compare with 0x800

4 (002) ret #96 # return snaplen

5 (003) ret #0 # filter failed

• Select all Ethernet frames which contain IPv4 packets which do not originate from the network
192.0.2.0/24:

1 $ tcpdump -s 96 -d ip and not src net 192.0.2.0/24
2 (000) ldh [12] # load ethernet type field

3 (001) jeq #0x800 jt 2 jf 6 # compare with 0x800

4 (002) ld [26] # load ipv4 src address

5 (003) and #0xffffff00 # mask the network part

6 (004) jeq #0xc0000200 jt 6 jf 5 # compare with 192.0.2.0

7 (005) ret #96 # return snaplen

8 (006) ret #0 # filter failed

• Select all IPv6 packets sent to the TCP destination port 80:

1 $ tcpdump -s 96 -d ip6 and tcp and dst port 80
2 (000) ldh [12] # load ethernet type field

3 (001) jeq #0x86dd jt 2 jf 7 # compare with 0x86dd

4 (002) ldb [20] # load next header field

5 (003) jeq #0x6 jt 4 jf 7 # compare with tcp (0x6)

6 (004) ldh [56] # load the dst port number

7 (005) jeq #0x50 jt 6 jf 7 # compare with 0x50

8 (006) ret #96 # return snaplen

9 (007) ret #0 # filter failed
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Extended Berkeley Packet Filter (eBPF)

• Main changes compared to the classic BPF (cBPF):
• 64-bit registers instead of 32-bit registers
• 10 general purpose registers plus a read-only frame pointer register
• different jump semantics
• call instruction and corresponding register passing conventions
• several new instructions and atomic operations
• different instruction encoding

• Application of eBPF:
• network packet filtering (the traditional use case)
• network policy processing (e.g., load balancing)
• kernel monitoring and tracing
• security monitoring and security policy enforcement
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Work towards an extended BPF (eBPF) started in 2011. In 2021, an eBPF Linux Foundation project has
been established. A standard of the eBPF instruction set architecture (ISA) has been published in 2024
[35]. While eBPF was originally designed for the Linux kernel, other operating systems have started
to support eBPF as well and hence the need for an explicit standard controlled by an independent
standardization organization.

eBPF code is usually written using restricted versions of standard programming languages like C or
Rust (the compiler backend generate eBPF code). User space processes then load the eBPF into the
kernel. The kernel verifies the code, translates it into machine code (just in time compilation), and hooks
it into the kernel so that it is called when relevant events happen. There are many different hook points,
some of the more prominent ones are:

• system call invocations (system calls)

• almost arbitrary kernel functions (kprobes)

• almost arbitrary user space functions (uprobes)

• the processing of network packets (xdp)

• predefined kernel tracepoints

• control groups managing kernel resources (cgroups)

• traffic control functions (tc)

• linux security module hooks (lsm)

Data may be stored between invocations and shared with user space via so called maps (There are
different kinds of maps for different purposes.) While generic user space tools like bpftool can be
used to manage eBPF programs and maps, eBPF programs usually come with dedicated user space
programs interacting with the eBPF programs executing in the kernel.

Further online information:

• Wikipedia: eBPF

• YouTube: eBPF: Unlocking the Kernel
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Secure Computing (seccomp and seccomp-bpf)

• The Linux Secure Computing feature enables processes to voluntarily reduce the
system calls they can use.

• The motivation is that many server processes go through some initialization and
afterwards only needs very few system calls.

• The basic idea was extended extended in 2005 to support flexible filtering of system
calls via BPF filters.

• This simple but effective mechanism has been picked up by several crucial server
and system components.
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The secure computing (seccomp) idea was created by Andrea Arcangeli in January 2005 in an attempt
to secure public grid computing workloads. The original seccomp implementation allowed only very few
system calls (with already open file descriptors). To add more flexibility, the idea was born to run cBPF
filters on system call invocations. Instead of filtering network packets, cBPF filters were run on a data
structure representing a system call and its arguments.

The BPF program is executed with access to a struct seccomp_data, which has the following fields:

1 /*
2 * int nr The sytem call number

3 * __u32 arch The architecture (calling convention)

4 * __u64 instruction_pointer The instruction pointer

5 * __64 args[6] Up to six system call arguments

6 */

A BPF filter usually first checks the architecture (since system calls and argument passing conventions
may differ between machine architectures), then system call number and depending on the goals the
system call arguments. Note that checking string values generally complicated since the system call
usually receives only the address of the string and not the string itself.

Writing BPF filters by hand is complicated. Higher-level abstractions are provided by libraries such as
libseccomp that take care of generating low-legel BPF filters.

Listing 7 shows a simple seccomp-bpf program written in C using raw C API calls. Listing 8 shows the
same program using the libseccomp library.

The original Linux seccomp approach has limitations and more recent work is moving towards using
eBPF for system call filtering [36].

Further online information:

• YouTube: Tutorial: The Why and How of libseccomp
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1 /*

2 * seccomp-bpf/hello-raw.c --

3 *

4 * Deny all system calls except the exit_group() system call and

5 * the write() system call writing to the standard output.

6 */

7

8 # define _POSIX_C_SOURCE 200809L

9

10 # include <linux/audit.h>

11 # include <linux/bpf.h>

12 # include <linux/filter.h>

13 # include <linux/seccomp.h>

14 # include <linux/unistd.h>

15 # include <stddef.h>

16 # include <stdio.h>

17 # include <stdlib.h>

18 # include <sys/prctl.h>

19 # include <unistd.h>

20 # include "util.h"

21

22 static void install_filter(void)

23 {

24 int rc;

25 struct sock_filter filter[] = {

26 BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, arch))),

27 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, MYARCH, 0, 7),

28 BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, nr))),

29 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_exit_group, 0, 1),

30 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

31 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_write, 0, 3),

32 BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, args[0]))),

33 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, STDOUT_FILENO, 0, 1),

34 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

35 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL),

36 };

37 struct sock_fprog prog = {

38 .len = (unsigned short)(sizeof(filter) / sizeof(filter[0])),

39 .filter = filter,

40 };

41

42 /* Ensure that execve() never gives the process additional

43 * privileges, a necessary prerequisite to install filters.

44 * Afterwards, install the BPF filter into the kernel. */

45

46 rc = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

47 if (rc < 0) {

48 fatal("prctl(NO_NEW_PRIVS, 1, ...) failed\n");

49 }

50 rc = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);

51 if (rc < 0) {

52 fatal("prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, ...) failed\n");

53 }

54 }

55

56 int main(void)

57 {

58 fputs("hello ", stdout); /* triggers library initializations */

59 install_filter();

60 fputs("world!\n", stdout);

61 fputs("process dying (invalid write system call)\n", stderr);

62 return EXIT_SUCCESS;

63 }

Listing 7: Sample seccomp-bpf program using raw C API calls
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1 /*

2 * seccomp-bpf/hello-lib.c --

3 *

4 * This version of the program does the same as hello.c but using

5 * the libseccomp library providing an easy to use, platform

6 * independent, interface to the Linux Kernel's syscall filtering

7 * mechanism.

8 */

9

10 # define _POSIX_C_SOURCE 200809L

11

12 # include <stdio.h>

13 # include <stdlib.h>

14 # include <unistd.h>

15 # include <seccomp.h>

16 # include "util.h"

17

18 static void install_filter(void)

19 {

20 int rc;

21 scmp_filter_ctx ctx;

22

23 /* Create a default deny filter disallowing all system calls and

24 * then allow all system calls required. */

25

26 ctx = seccomp_init(SCMP_ACT_KILL);

27 if (ctx == NULL) {

28 fatal("seccomp_init() failed\n");

29 }

30

31 /* Add rules for allowed system calls. We allow the write system

32 * call writing to the standard output and exit_group system call

33 * used to terminate the process. */

34

35 rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 1,

36 SCMP_A0(SCMP_CMP_EQ, STDOUT_FILENO));

37 if (rc < 0) {

38 fatal("seccomp_rule_add() failed: %d\n", rc);

39 }

40

41 rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit_group), 0);

42 if (rc < 0) {

43 fatal("seccomp_rule_add() failed: %d\n", rc);

44 }

45

46 /* Generate the seccomp BPF filter and load it into the kernel. */

47

48 rc = seccomp_load(ctx);

49 if (rc < 0) {

50 fatal("seccomp_load() failed: %d\n", rc);

51 }

52 }

53

54 int main(void)

55 {

56 fputs("hello ", stdout); /* triggers library initializations */

57 install_filter();

58 fputs("world!\n", stdout);

59 fputs("process dying (invalid write system call)\n", stderr);

60 return EXIT_SUCCESS;

61 }

Listing 8: Sample seccomp-bpf program using the libseccomp library
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1 use seccompiler::{

2 BpfProgram, SeccompAction, SeccompCmpArgLen, SeccompCmpOp, SeccompCondition, SeccompFilter,

3 SeccompRule,

4 };

5 use std::convert::TryInto;

6

7 fn main() {

8 let filter: BpfProgram = SeccompFilter::new(

9 vec![

10 (libc::SYS_accept4, vec![]),

11 (

12 libc::SYS_fcntl,

13 vec![

14 SeccompRule::new(vec![

15 SeccompCondition::new(

16 1,

17 SeccompCmpArgLen::Dword,

18 SeccompCmpOp::Eq,

19 libc::F_SETFD as u64,

20 )

21 .unwrap(),

22 SeccompCondition::new(

23 2,

24 SeccompCmpArgLen::Dword,

25 SeccompCmpOp::Eq,

26 libc::FD_CLOEXEC as u64,

27 )

28 .unwrap(),

29 ])

30 .unwrap(),

31 SeccompRule::new(vec![SeccompCondition::new(

32 1,

33 SeccompCmpArgLen::Dword,

34 SeccompCmpOp::Eq,

35 libc::F_GETFD as u64,

36 )

37 .unwrap()])

38 .unwrap(),

39 ],

40 ),

41 ]

42 .into_iter()

43 .collect(),

44 SeccompAction::Allow,

45 SeccompAction::Trap,

46 std::env::consts::ARCH.try_into().unwrap(),

47 )

48 .unwrap()

49 .try_into()

50 .unwrap();

51

52 seccompiler::apply_filter(&filter).unwrap();

53 }

Listing 9: Sample program using the raw interface of the seccompiler crate
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1 use seccompiler::BpfMap;

2 use std::convert::TryInto;

3

4 fn main() {

5 let json_input = r#"{

6 "main_thread": {

7 "mismatch_action": "allow",

8 "match_action": "trap",

9 "filter": [

10 {

11 "syscall": "accept4"

12 },

13 {

14 "syscall": "fcntl",

15 "args": [

16 {

17 "index": 1,

18 "type": "dword",

19 "op": "eq",

20 "val": 2,

21 "comment": "F_SETFD"

22 },

23 {

24 "index": 2,

25 "type": "dword",

26 "op": "eq",

27 "val": 1,

28 "comment": "FD_CLOEXEC"

29 }

30 ]

31 },

32 {

33 "syscall": "fcntl",

34 "args": [

35 {

36 "index": 1,

37 "type": "dword",

38 "op": "eq",

39 "val": 1,

40 "comment": "F_GETFD"

41 }

42 ]

43 }

44 ]

45 }

46 }"#;

47

48 let filter_map: BpfMap = seccompiler::compile_from_json(

49 json_input.as_bytes(),

50 std::env::consts::ARCH.try_into().unwrap(),

51 )

52 .unwrap();

53 let filter = filter_map.get("main_thread").unwrap();

54

55 seccompiler::apply_filter(&filter).unwrap();

56 }

Listing 10: Sample program using the JSON interface of the seccompiler crate
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1 // This file demonstrates the use of seccomp in the high-level

2 // extrasafe API. While system calls are generally disabled, writing

3 // to stdout and stderr is still allowed.

4

5 use std::io;

6 use std::io::Write;

7 use std::fs::File;

8

9 fn main() {

10 let tmp_file = tempfile::tempdir().unwrap().path().join("foo");

11 let mut stdout = io::stdout().lock();

12 let mut stderr = io::stderr().lock();

13

14 extrasafe::SafetyContext::new()

15 .enable(

16 extrasafe::builtins::SystemIO::nothing()

17 .allow_stdout()

18 .allow_stderr(),

19 )

20 .unwrap()

21 .apply_to_all_threads()

22 .unwrap();

23

24 // opening files fails

25 assert!(File::create(&tmp_file).is_err());

26

27 // writing stdout works

28 assert!(stdout.write(b"hello stdout\n").is_ok());

29

30 // writing stderr works

31 assert!(stderr.write(b"hello stderr\n").is_ok());

32 }

Listing 11: Sample program using seccomp with the extrasafe crate
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1 // This file demonstrates the use of seccomp and landlock features in

2 // the high-level extrasafe API. While system calls are generally

3 // disabled, creating a temporary file is still allowed. Note that

4 // there are some notable restrictions, i.e., landlock safety contexts

5 // can only be applied to the current threads (and threads spawned

6 // from it).

7

8 use std::fs::File;

9

10 fn main() {

11 let tmp_path = tempfile::tempdir().unwrap().into_path();

12 let tmp_file = tmp_path.join("foo");

13

14 extrasafe::SafetyContext::new()

15 .enable(

16 extrasafe::builtins::SystemIO::nothing()

17 .allow_create_in_dir(&tmp_path)

18 .allow_write_file(&tmp_file),

19 )

20 .unwrap()

21 .apply_to_current_thread()

22 .unwrap();

23

24 // opening arbitrary files fails

25 assert!(File::open("/etc/passwd").is_err());

26

27 // creating a temporary file works

28 assert!(File::create(tmp_file).is_ok());

29

30 // other syscalls are disallowed

31 assert!(std::net::UdpSocket::bind("127.0.0.1:0").is_err());

32 }

Listing 12: Sample program using landlock with the extrasafe crate
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Linux firejail

• The firejail program can run unmodified programs in a sandbox

• Firejail uses among other things seccomp-bpf to create sandboxes

• Program specific profiles are relatively easy to create

• A downside of firejail is that it requires root privileges

• The firejail project started in 2014 (GPL)

• Gaining traction in desktop use cases (running desktop apps in firejails)
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Here is a simple firejail seccomp-bpf example. We run the shell dash after “dropping” the execve system
call. As a consequence, the execution of all non-builtin commands fails.

1 $ firejail --quiet --noprofile --seccomp.drop=execve bash -c date
2 bash: line 1: /usr/bin/date: Operation not permitted

A list of all system calls known by firejail can be optained by running firejail --debug-syscalls and
a list of all error code by running firejail --debug-errnos. Error codes can be used to fail system
calls with a specific error:

1 $ firejail --quiet --no-profile --seccomp=unlinkat:ENOENT \
2 bash -c "touch /tmp/aa; rm /tmp/aa"

3 rm: cannot remove '/tmp/aa': No such file or directory

The firejail program is usually installed with a large collection of profiles for well-known applications.
The profiles are relatively easy to read since they more or less translate to firejail options. For seccomp
filters, it is possible to let firejail print the classic BPF bytecode.
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Privilege Separation

Definition (privilege separation)

Privilege separation divides a complex program into smaller components, each running
with least privileges.

• Privilege separation aims at limiting the damage caused by a compromised program.

• Requires efficient communication between the smaller components.

• Good software architecture makes privilege separation easier.

• Library isolation is a form of privilege separation aiming at isolating libraries.
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Privilege separation aims at limiting the potential damage that can be caused by a compromised com-
plex program by splitting the program into smaller pieces, each running with the least privileges needed
to do its specific work. The OpenSSH implementation, for example, executes the user authentication
in a separate process [37]. Similarly, many web services are structured into microservices that can run
with reduced privileges. Here is a typical structure of a web service (loosely following [38]):

+--------+ +--------+ +--------+ +--------+

<==>| http |<->| app | | init | | log |

| server | | server | | helper | | server |

+--------+ +--------+ +--------+ +--------+

^ ^

.------------+------------. |

v v v v

+--------+ +--------+ +--------+ +---+

| auth | | search | | tx | | |

| server | | server | | server | | |

+--------+ +--------+ +--------+ +---+

^ ^ ^

| +------------'

v v

+---+ +--------+ +--------+ +---+

| | | data |<->| data |<->| |

| | | server | | base | | |

+---+ +--------+ +--------+ +---+

The frontend HTTP server provides transport security and basic HTTP processing and in some cases
proxying. The application server is primarily responsible for routing requests to different backend
servers, such as an authentication server for authenticating clients (which typically requires access
to so some data store with accounts and credentials), a search server, and a transaction server. The
search and transaction server use a data server, which interacts with a data base server by generating
and submitting SQL queries. The data base server is the only component having direct access to the
persistent data store. All components provide logging and/or auditing data to a log server, which has
its own persistent data store. Finally, the initialization helper is responsible to generate and distribute
access tokens that the various servers need to talk to each other.

Various toolkits have been developed to simplify the isolation, e.g., compiler-assisted code separation
techniques that rewrite source code in a semi-automated way (Pitchfork [39], Cali [40]).
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19 Container and Container Security
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OS-Level Virtualization (Container)

Operating System + Isolation Mechanisms (e.g. LXC)

Hardware

• Separation of processes

• Small performance overhead

• Single operating system ABI

• Linux Container (LXC)

• BSD Jails

• Solaris Zones

• . . .
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Operating system level virtualization essentially separates groups of processes executing inside a con-
tainer from groups of processes executing inside some other container. The operating system kernel
manages all processes, the regular processes and the processes inside of containers. Special kernel
mechanisms are provided to control CPU resources and memory resources.

Container technology has become popular since (i) a container has very little overhead compared to
a full virtual machine and (ii) it is possible to compose container images. For example, an operating
system container image may be combined with a database backend image and a web server image to
provide the basis of an application service image.

The Linux Container LXC technology was first released in 2008. It got a big push in 2013 when the
Docker software was released, which makes it easy to construct and run containerized applications.
While Docker had big impact on the software industry, it also has limitations and a competition started
soon after the release leading to the development of several competitors. Among the notable competi-
tors are Podman and systemd-nspawn. In order to avoid technology fragmentation, the Open Container
Initiative (OCI) was launched (as part of the Linux Foundation) in 2015 to provide specifications that
ensure some level of interoperability between container formats and runtimes.

144



Container Terminology

• An image is a read-only template of a container. An image consists of layers
stacked on each other. Images are portable and can be stored in repositories.

• A layer is a part of an image, it may consist of a command or files that are added
to an image.

• A repository is a collection of (versioned) images.

• A registry (like Docker Hub) manages repositories.

• A container is an active (running) instance of an image. An image can have many
concurrently running container.

• A runtime turns an image into a running container.

• A host operating system executes containers and the runtime.
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Composition is a powerful concept. Images are composed by adding layers on top of each other. This
allows me to take a barebone Linux image, layer a database on top of it, layer a web server on top of it,
and finally layer my application logic on top.
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Linux Namespaces

Name Description

cgroup separates control groups used to manage resources
ipc separates interprocess communication facilities
mnt separates file systems
net separates network stacks
pid separates processes
time separates system time and timezones
user separates user and group identities
uts separates host and domain names

• Linux namespaces isolate global operating system resources.
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A running container consists of processes executing in separate namespaces. The kernel and certain
host processes have access to data inside containers. Some useful command line utilities:

• lsns lists information about all the currently accessible namespaces

• findmnt lists all monted filesystems

• unshare executes a program in a new namespace

• nsenter executes a program in an existing namespace

146



Linux Control Groups

A control group (cgroup) is a collection of processes under a set of resource limits.
Control groups are hierarchical and control resources such as memory, CPU, block I/O,
or network usage. Controller (subsystems) have been implemented for these resources:

• cpu scheduling and accounting

• cpu pinning (assigning specific CPUs to specific tasks)

• suspending or resuming tasks

• memory limits

• block I/O

• network packet tagging setting network traffic priorities

• namespaces

• performance analysis data collection
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Container Security: Images

Images
Images bundle the software and data accessible to a running container. Images are
typically constructed by building on other images, using overlay filesystems.

Recommendations:

• keep images updated

• understand image dependencies

• limit permissions on images

• sign images to ensure that their integrity can be verified
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Container Security: Image Repositories

Image Repositories
Images are stored in an image repository from where they can be pulled and started.

Recommendations:

• keep your image repository private

• monitor your image repository for changes

• harden the server hosting images
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Container Security: Container Runtimes

Container Runtimes
A container runtime is responsible for starting and managing containers according to
some configuration using a given host operating system. Container runtimes can be
minimal or coming with many features (recall that complexity is the enemy of security).

Recommendations:

• keep the container runtime updated

• monitor the container runtime
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Container Security: Container Orchestrator

Container Orchestrator
A container orchestrator provisions, deploys, scales, and manages containerized
applications consisting of multiple containers.

Recommendations:

• configure access controls

• monitor orchestrator
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Container Security: Host Operating System

Host Operating System
The host operating system executes the processes of the containers and the container
runtime.

Recommendations:

• minimal host operating systems are easier to harden

• keep the host operating system and container runtime updated

• use mandatory access control (e.g., SELinux)

• monitor the host operating system
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Podman vs. Docker Security

• Docker appeared in 2013 (Docker Inc. and others)

• Podman appeared in 2018 (Red Hat and others)

• Docker does its work through a service daemon

• Podman does not require a service daemon

• Podman is rootless, it can run container from a regular user account

• Podman supports user id separation

• Podman can run collections of related containers aggregated into so called pods

• Podman integrates with secure computing and SE Linux
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Note that both container solutions evolve and it is likely just a matter of time until features of one solution
become also available in the other solution.
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Part VI

Trusted and Confidential Computing

This part introduces the notion of a trusted computing base, which is a combination of hardware and
software mechanisms that can be used to verify that a system is the system it claims to be and that it is
in a trusted state. The main idea is to derive the trust from hardware components that are designed to
securely holds cryptographic keys and data.

The technology, originally based on trusted platform modules with very limited functionality, has evolved
to more flexible and programmable trusted execution environment and most recently into hardware
architectures providing confidential computing services.

By the end of this part, students should be able to

• explain the difference between trusted platform modules, trusted execution environments, and
confidential computing;

• describe platform configuration registers and how they are used;

• understand the difference between endorsement keys, storage root keys, and attestation identity
keys;

• outline the stages of a boot process;

• explain the difference between measured and secure boot;

• use the remote attestation terminology correctly;

• outline different remote attestation models;

• contrast approaches for building trusted execution environments;

• summarize and compare confidential computing mechanisms.
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Trusted Computing Base

Definition (trusted computing base)

The trusted computing base of a computer system is the set of hard- and software
components that are critical to achieve the systems’ security properties.

• The components of a trusted computing base are designed such that when other
parts of a system are attacked, the device will not misbehave.

• Trusted computing bases should be small to be able to verify their correctness.

• Trusted computing bases should be tamper-resistant.

• Trusted computing bases typically involve special hardware components.
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The general idea behind trusted computing is to design hardware and software components that can
be trusted. Since it is hard to design software that can be trusted, a trusted computing base typi-
cally includes hardware components that are assumed to be tamper-resistant. These trusted hardware
components can then be used to to bootstrap trust into other software components, for example, an
operating system that has been loaded using a secure boot process involving trusted hardware compo-
nents.

Measurements are used to assess the authenticity of software components and data (e.g., by calcu-
lating a cryptographic hash over code and data). The measurements can be reported to attest the
component’s state to other systems. This process is called attestation. For example, an attestation
may prove that a proper operating system kernel has been loaded into a computer created by a specific
manufacturer.

Note that trusted computing is in particular of high relevance for the fast growing number of mobile and
embedded devices. A modern car, for example, consists of many small embedded computer systems
and there is certain interest to verify that the devices implementing critical functions of a car have not
been tampered with.
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Trusted Computing Security Goals

• Isolation: Separation of essential security critical functions and associated data
(keys) from the general computing system.

• Attestation: Proving to an authorized party that a specific component is in a
certain state.

• Sealing : Wrapping of code and data such that it can only be unwrapped and used
under certain circumstances.

• Code Confidentiality : Ensures that sensitive code and static data cannot be
obtained by untrusted hardware or software.

• Side-Channel Resistance: Ensures that untrusted components are not able to
deduce information about the internal state of a trusted computing component.

• Memory Protection: Protects the integrity and authenticity of data sent over
system buses or stored in (external) memory from physical attacks.
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Isolation is the key motivation for defining trusted computing bases. To bootstrap trust into a system, a
system needs to be able to hold keys in tamper-resistant memory and it must be able to perform crypto-
graphic operations in such a way that keys never leave the isolated environment. As a consequence, the
first candidates of functions to place into trusted hardware are cryptographic algorithms and key gener-
ation and storage. But once more flexibility is desired, it makes sense to add more functionality to the
isolated environment and ultimately you will make the isolated environments programmable (which then
eventually may lead to a recursion when the software running int he trusted computing base becomes
too complex).

Attestation is often needed to verify that a system can be trusted. Attestation may be a local or remote
process. For example, a car manufacturer may decide to install firmware updates only on devices that
have not been tampered with. Hence, the software update process may request a remote attestation
that the car component is in a proper state.

Sealing code and data can for example be used to bind it to a specific device, a certain configuration of
a device, the state of a software module or a combination of these.

Code confidentiality may be used to protect intellectual property. Code confidentiality may be achieved
by combining isolation, encryption, and sealing.

Side-channel resistance is an important property. The attacker model has a big influence on the costs
for achieving side-channel resistance and hence this must be well defined to now what side-channel
resistance means. For example, an attacker who has physical access to the hardware can launch
attacks by injecting faults or measuring power consumption to reveal information about the internal
state of a trusted computing component. An attacker who has only access to the untrusted computing
components may reveal information via a timing side-channel attack on shared caches.

Memory protection has to consider passive attacks (e.g., bus snooping) and active attacks (e.g., data or
fault injection). The means are to encrypt data, to calculated integrity checksums, and to prevent replay
attacks. Of course, this is challenging to do at typical bus speeds.

Most trusted computing systems only support some of these security goals. The reason is simply that
supporting all of them increases complexity, which defeats the goal of keeping the trusted computing
base small.
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TPM technology has been criticized since it can be used to lock a device such that the owner of the
device is prevented from installing arbitrary software or from making certain changes to the existing
software and device configuration. Ideally, the informed owner of a device should be able to take an
informed decision whether she wants to trust the TPM embedded in a device. In reality, many owners
will likely never ask this question and they may in fact see benefits of trusting the vendor of a device
(and if necessary be prepared to take legal action against the vendor if the local laws support that).
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Trusted Platform Module (TPM)

• A Trusted Platform Module (TPM) is a dedicated micro-controller designed to
secure hardware through integrated cryptographic operations and key storage.

• The TPM 1.2 specification was published in 2011:
• Co-processor capable of generating good random numbers, storing keys, performing

cryptographic operations, and providing the basis for attestation.
• Limited protection against physical attacks.

• The TPM 2.0 specification was published in 2014.
• Support of a larger set of cryptographic algorithms and more storage space for

attestation purposes.

• The TPM specifications have been created by the Trusted Computing Group (a
consortium of vendors with large influence of Microsoft on TPM 2.0).
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The TPM specification version 1.2 requires that TPMs support a random number generator (RNG), an
RSA implementation supporting at least 2048-bit keys, and the SHA-1 cryptographic hash function.
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Trusted Platform Module Version 2.0

TPM 2.0 implementations can come in various forms:

• Discrete TPMs are dedicated chips implementing TPM functionality in their own
tamper resistant semiconductor package.

• Integrated TPMs are part of another chip.

• Firmware TPMs are software-only solutions that run in a CPU’s trusted execution
environment.

• Software TPMs are software emulators of TPMs that run with no more protection
than a regular program gets within an operating system.

• Virtual TPMs are provided by a hypervisor and rely on the hypervisor to provide
them with an isolated execution environment.
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TPM technology is complex and even though you may find a real TPM on your computer, it is strongly
suggested to experiment first with software TPMs since it is much easier to recover from mistakes. On
Linux, a tpm is exposed to processes via device files. It is, however, recommended to use software
libraries to interact with a TPM.
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Platform Configuration Registers

Definition (platform configuration register)

A platform configuration register (PCR) is a register storing configuration data and
system measurements. They are restricted to the operations reset, read, and extend.

• There is no mechanism to directly write to a PCR

• The size of the register depends on the size of the hash function used by the
extend operation

• PCRs are organized into PCR banks (typically 24 PCRs)
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The extend operation extends cryptographic hash values. It appends data to the current hash value,
hashes the concatenation, and sets the register to the new hash digest. This is exemplified by the
following Python code:

1 import hashlib
2

3 class PCR:

4 def __init__(self, halg):

5 self.halg = halg

6 self.reset()

7

8 def reset(self):

9 self.value = b'\x00' * hashlib.new(self.halg).digest_size

10

11 def extend(self, e):

12 m = hashlib.new(self.halg)

13 m.update(self.value)

14 m.update(e)

15 self.value = m.digest()

16

17 def read(self):

18 return self.value

PCRs can, for example, be used to obtain a hash of system components during the boot process:

1 pcr = PCR('sha256')
2 pcr.extend(b'checksum of 1st stage boot loader')

3 pcr.extend(b'checksum of 2nd stage boot loader')

4 pcr.extend(b'checksum of kernel')

5 pcr.extend(b'checksum of initrd')

6 print(pcr.read().hex())

On Linux, the PCRs can be read using the following command:

1 $ sudo tpm2 pcrread
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Example PCR Allocation

PCR Usage

0 BIOS
1 BIOS configuration
2 Option ROMs
3 Option ROM configuration
4 MBR (master boot record)
5 MBR configuration
6 State transitions and wake events
7 Platform manufactor specific measurements
8-15 Static operating system
16 Debug
23 Application support
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There is no standard PCR allocation scheme, this is just showing a possible example allocation.

161



Endorsement Key and Storage Root Key

Definition (endorsement key)

The asymmetric endorsement key (EK) is generated by the TPM at manufacturing
time. The EK essentially defines the identity of a TPM.

Definition (storage root key)

The storage root key (SRK) is used to encrypt other keys and thus it forms the root of
the TPM key hierarchy. Replacing the storage root key invalidates all keys in the key
hierarchy.

• It is possible to obtain the public key (and in some cases a certificate) from the
TPM, the private key never leaves the TPM.

• The SRK should be reset when hardware ownership changes.

Jürgen Schönwälder (Constructor University) System Security: Trusted and Confidential Computing CC-BY-NC-ND February 5, 2026 148 / 195

162



Attestation Identity Keys and Quotes

Definition (attestation identity keys)

Attestation identity keys (AIKs) are used to sign the content of PCR registers. They
serve as pseudonyms for the EK to protect the privacy of users.

Definition (quote)

A quote is a data structure holding PCR values (and some other data to prevent
replays), which is signed by an attestation key.

• The quote can be used to attest that a system is in a certain good or ’golden’ state.

Jürgen Schönwälder (Constructor University) System Security: Trusted and Confidential Computing CC-BY-NC-ND February 5, 2026 149 / 195

If the EK would be used to sign quotes, then the EK would allow to track the identity of hardware.

The following example shows how to obtain a quote on a Linux system:

1 # create an endorsement key, store endorsement key context in primary.ctx
2 $ sudo tpm2 createprimary -C e -c primary.ctx

3

4 # create another key in the endorsement key hierarchy

5 $ sudo tpm2 create -C primary.ctx -u key.pub -r key.priv

6

7 # load key using the endorsement key context, store key context in key.ctx

8 $ sudo tpm2 load -C primary.ctx -u key.pub -r key.priv -c key.ctx

9

10 # obtain quote of all sha256 PCRs with nonce deadbeef and the key context

11 $ sudo tpm2 quote -q deadbeef -c key.ctx -l sha256:all

If an appraiser determines that the PCR values contained in a quote do not match the expected ”golden”
values, then it is difficult to determine what might have led to the difference. A solution to this problem
is that a system outside the TPM keeps a log of all PCR extensions. The event log can be used to
recalculate received PCR values (and thus be verified). Comparisons of event log entries can be used
to identify where deviations occured.

163



Secure Boot

20 Trusted Platform Modules

21 Secure Boot

22 Remote Attestation

23 Trusted Execution Environments

24 Confidential Computing
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Booting a Regular Linux Computer

Booting a regular Linux computer usually involves the following sequence of steps:

1. Bare minimum CPU initialization

2. 1st stage boot loader
(understands block devices, perhaps a simple VFAT file system)

3. 2nd stage boot loader
(understands several file systems, potentially modular)

4. Kernel initial stage
(using an initial root file system laoded in main memory)

5. Kernel final stage (using the final root file system)
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The 1st state boot loader is stored in non-volatile memory (eproms or flash memory). It first checks and
initializes hardware components and then locates the 2nd stage boot loader and loads it into memory.
There are two widely used 1st stage boot loaders:

• BIOS (Basic Input/Output System)

Introduced with CP/M around 1975, loading the 2nd stage boot loader from the so called master
boot record (MBR) of a block device.

• UEFI (Unified Extensible Firmware Interface)

Introduced by Intel in 1998, using the GUID partition table to find the partition holding the 2nd
stage boot loader. The boot partition may be in VFAT format and it can be modular.

The 2nd stage boot loader is stored on a block storage device and it may be module and loaded in
stages. The 2nd stage boot loader is able to read more complicated file systems and thus able to locate
and load a kernel from a more regular file system. The 2nd stage boot loader may also load the image
of an initial root file system into main memory that is used when the control is passed to the kernel.

The kernel initializes detects hardware components and loads the drivers necessary for the detected
hardware components. It also initializes devices in the device file system and sets up any necessary
mappings for block devices (e.g., logical volumes, software raids, block device encryption) and it may
optionally initialize network interfaces to attach to network file systems. It finally checks and mounts
the real root file system and passes control to the initial user process (systemd or initd), which then
executes the initialization of all user space processes and daemons.

Booting embedded systems is very different since they often do not have a block device to boot from.
An example of a widely used boot loader for embedded systems is U-Boot.

Further online information:

• Wikipedia: UEFI

• Wikipedia: GNU GRUB

• Wikipedia: Das U-Boot
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Secure Boot and Measured Boot

Definition (secure boot)

Secure boot refers to mechanisms that verify signatures of all software components
(e.g., firmware, bootloader, kernel) involved in the boot process of a computing system.

Definition (measured boot)

Measured boot refers to mechanisms that take measurements during the boot process
of a computing system.

• The cryptographically protected measurements can be verified against expected
golden values (held on a remote machine), turning a measured boot into a trusted
boot.
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Secure boot ensures that every stage of the boot process (firmware, boot loader, hypervisor, kernel)
validates the next stage before loading and activating it. Secure boot requires signatures of all software
components and root keys against which signatures can be verified. Problems arise if root keys get
broken. There is also a certain risk of misuse of root keys to establish vendor lock-in or vendor controlled
obsolescence of computing systems. There is also a tussle between ensuring security even in situations
where attackers may have physical access to devices and the danger to accidentally brick devices.
Backdoors, intended to unbrick devices when things have gone wrong, may introduce door attackers
can use to gain control of devices.

Measured boot requires to keep a trusted log of the boot process. This is commonly implemented by
collecting hashed of software components and device states and to ensure that they are cryptograph-
ically linked and protected by some root key. During the various boot stages, the firmware performs
a ”measure” of the next boot stage by hash extending specific PCRs. In an ideal world, some PCRs
would, after the boot process has finished, hold a complete hash of all software and data involved in the
boot process.

• The core root of trust measurement (CRTM) is an initial measurement taken upon power-on.

• Static root of trust measurements (SRTMs) cover subsequent boot stages.

• Dynamic root of trust measurements (DRTMs) cover measurements involving reboots.

Secure and measured boot are crucial for bootstrapping security services on devices that are deployed
in untrusted places (e.g., mobile network base stations mounted on roofs or on towers in the middle of
some woods).
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Binding and Sealing

Definition (binding)

Binding data to a TPM means encrypting data by a binding key stored within a TPM.

Definition (sealing)

Sealing data to a TPM means encrypting data and values of selected platform
configuration registers by a sealing key stored within a TPM.

• Binding data to a TPM means that the data can only be accessed if the same
TPM (with the same binding key) is available for decryption.

• Sealing data to a TPM means that the data can only be accessed if the same TPM
(with the same sealing key) is available for decryption and the machine is in the
same state as reflected by the platform configuration registers.
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Sealing data to a TPM essentially means that data is only accessible to a specific machine in a specific
operational state. A typical use case are encrypted block devices, where the key used to access the
keys used to encrypt block devices may be sealed and stored in non-volatile memory of the TPM. This
achieves the following security functions:

• An encrypted block device cannot be accessed after mounting it into a different computer.

• An encrypted block device cannot be accessed after booting the computer into a different operat-
ing system.

• The key required to unlock access to the keys required to decrypt block devices is stored inside
the TPM and available from the TPM in early stages of the boot process.

While it should be obvious, relying on a sealed key stored in a TPM can also be dangerous if for some
reason it is impossible to boot a machine again into the same state. Hence, it is crucial to have good and
recent backups and to consider provisioning alternate keys that can be used in emergency situations.
Of course, the backups and any additional keys for emergency situations should not open an easy to
explore backdoor to access data.
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Remote Attestation

Definition (remote attestation)

Remote attestation refers to mechanism that enable a remote verifier to obtain
trustworty evidence about the integrity and security properties of the attester.

Parties involved in remote attestation procedures:

• The attester produces evidence about itself.

• The verifier appraises evidence and creates attestation results.

• The relying party consumes attestation results and acts accordingly.

• The endorser provides endorsements used by the verifier to appraise the
authenticity of evidence.
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Remote attestation protocols enable to export information about the state of a device to remote attes-
tation services that can initiate of control further actions, like enabling network connectivity only as long
as a device has measurements that match expected baseline values.

The IETF has worked on remote attestation protocols and an underlying architecture, published as
RFC 9334 [41]. The work addresses common situations where verifiers essentially provides attestation
results as a service to consumers of attestation results, the so called relying party.
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Remote Attestation: Passport Model

.------------.

| | Compare Evidence

| Verifier | against appraisal policy

| |

'--------+---'

^ |

Evidence | | Attestation

| | Result

| v

.---+--------. .-------------.

| +------------->| | Compare Attestation

| Attester | Attestation | Relying | Result against

| | Result | Party | appraisal policy

'------------' '-------------'
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The passport model resembles how many nations issue passports to citizens:

1. Citizens provide some evidence about their identity (e.g., birth certificates) to local authorities (the
verifier).

2. The local authority, verifies and appraises the evidence, returning a passport (attestation results)
to the citizen.

3. The citizen uses the passport to convince other parties (relying parties) of its identity

Note that the evidence is signed by the endorser while the attestation result is signed by the verifier. A
relying party thus needs to have access to the key of the verifier but not to the key of the endorser.
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Remote Attestation: Background-Check Model

.-------------.

| | Compare Evidence

| Verifier | against appraisal

| | policy

'--------+----'

^ |

Evidence | | Attestation

| | Result

| v

.------------. .----|--------.

| +-------------->|---' | Compare Attestation

| Attester | Evidence | Relying | Result against

| | | Party | appraisal policy

'------------' '-------------'
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The background-check model resembles how organizations perform background checks while hiring
new employees:

1. The prospective employee provides claims about their education and experience (evidence) to the
organization (the relying party).

2. The organization contacts a verifier to check whether the claims provided by the prospective em-
ployee are trustworthy.

3. The verifier check the evidence and provides the attestation results back to the organization (the
relying party).
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Remote Attestation: Combined Model

.-------------.

| | Compare Evidence

| Verifier | against appraisal policy

| |

'--------+----'

^ |

Evidence | | Attestation Result

| v

.----+--------.

| | Compare

| Relying | Attestation Result

| Party A | against appraisal policy

'--------+----'

^ |

Evidence | | Attestation Result

| v

.----+--------. .-------------.

| +-------------->| | Compare Attestation

| Attester | Attestation | Relying | Result against

| | Result | Party B | appraisal policy

'-------------' '-------------'
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This is a combination of the background-check model, where the relying party A feeds the result back
to the attester, who can use the result for another relying party B using the passport model.
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Trusted Execution Environment (TEE)

Definition (trusted and rich execution environment)

A trusted execution environment (TEE) is a secure area of a processor providing
isolated execution, integrity of trusted applications, as well as confidentiality of trusted
application resources. A rich execution environment (REE) is the non-secure area of a
processor where an untrusted operating system executes.

• REE resources are accessible from the TEE

• TEE resources are accessible from the REE only if explicitly allowed.

• The TEE specifications have been created by the GlobalPlatform (another industry
consortium).
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The TEE concept has been quite successful in the computing industry. There are several processor
designs implementing TEEs and many mobile devices use this technology to implement TPM-like func-
tionality. On mobile phones, it is quite common that certain hardware components (e.g., a fingerprint
reader) are only accessible to TEEs and the REE has to call the TEE to perform operation with the
hardware. It is also common to implement secure boot technology using code running in the TEE to
ensure that only authorized and untampered operating systems are loaded into the REE.

The architectural model provided in [42] is shown below:

The software running inside a TEE is sometimes called trustlets and the TEE is occasionally called the
“secure world” and the REE the “normal world”.
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TrustZone Cortex-A (ARM)

• The ARM processor architecture has an internal communication interface called the
Advanced eXtensible Interface (AXI).

• ARM’s TrustZone extends the AXI bus with a Non-Secure (NS) bit.

• The NS bit conveys whether the processor works in secure mode or in normal mode.

• The processor is normally executing in either secure or normal mode.

• To perform a context switch (between modes), the processor transits through a
monitor mode.

• The monitor mode saves the state of the current world and restores the state of
the world being switched to.

• Interrupts may trap the processor into monitor mode if the interrupt needs to be
handled in a different mode.
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ARM has coined the term TrustZone but it resolves technically to two very different solution. The first
solution, TrustZone for Cortex-A, is for relatively resource rich systems such as processors you find in
your mobile phones. The second solution, TrustZone for Cortex-M, is for relatively resource limited sys-
tems such as processors that you find in embedded systems. There is often some confusion because
people do not make the distinction between these two solutions explicit.

ARM’s TrustZone architecture looks from a very high level like calls from user space programs into an
operating system kernel implemented in hardware. The monitor mode is the entry point that carries out
the mechanics of calling from normal mode into secure mode, ensuring proper isolation during the call.

TrustZone has been very successful in the mobile device market. Most of the operating systems ex-
ecuting on mobile devices do support TrustZone to implement TPM-like functionality and secure boot
mechanisms. A detailed survey of TrustZone technology can be found in [43].
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TrustZone Cortex-M (ARM)

• The Cortex-M design follows the Cortex-A design by having the processor execute
in either secure or normal mode.

• Instructions read from secure memory will be executed in the secure mode of the
processor and instructions read from non-secure memory will be executed in normal
mode.

• Cortex-M replaces the monitor mode of the Cortex-A design with a faster
mechanism to call secure code via multiple secure function entry points (supported
by the machine instructions SG, BXNS, BLXNS).

• The Cortex-M design supports multiple separate call stacks and the memory space
is separated into secure and non-secure sections.

• Interrupts can be configured to be handled in secure or non-secure mode.
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TrustZone for Cortex-A has been introduced in 2004. The Cortex-M design is much newer and driven
by the need to create trustworthy embedded systems. Cortex-M processors have no secure monitor
mode and software. Instead, the transition between both worlds its handled by a set of mechanisms
implemented into the core logic of the processor.
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Security Guard Extension (SGX, Intel)

• SGX places the protected parts of an application in so called enclaves that can be
seen as a protected module within the address space of a user space process.

• SGX enabled CPUs ensure that non-enclaved code, including the operating system
and potentially the hypervisor, cannot access enclave pages.

• A memory region called the Processor Reserved Memory (PRM) contains the
Enclave Page Cache (EPC) and is protected by the CPU against non-enclave
accesses.

• The content of enclaves is loaded when enclaves are created and measurements are
taken to ensure that the content loaded is correct.

• The measurement result obtained during enclave creation may be used for (remote)
attestation purposes.

• Entering an enclave is realized like a system call and supported by special machine
instructions (EENTER, EEXIT, ERESUME).

Jürgen Schönwälder (Constructor University) System Security: Trusted and Confidential Computing CC-BY-NC-ND February 5, 2026 163 / 195

Intel SGX was introduced in 2015 with the sixth generation Intel Core processors. The design tar-
gets desktop and server platforms. It allows user-space processes to create private protected memory
regions (the enclaves) that are isolated from other processes and also processes running at higher priv-
ilege levels (hypervisors or operating system kernels). Enclaves work almost transparently for existing
hypervisors or memory management units.

If the capacity of the Enclave Page Cache (EPC) is exceeded, pages may be written to other memory
regions after encrypting the content.

Creation and deletion of enclaves is performed by system software running at the highest privilege level
while entering and leaving enclaves is done using the lowest privilege level.
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Confidential Computing

20 Trusted Platform Modules

21 Secure Boot

22 Remote Attestation

23 Trusted Execution Environments

24 Confidential Computing
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Definition and Fundamental Concepts

Definition (confidential computing)

Confidential computing protects data in use by performing computation in a
hardware-based attested trusted execution platform.

• Data protection mechanisms:
• Data at rest ⇒ storage encryption
• Data in transit ⇒ communication security (TLS, ...)
• Data in use ⇒ memory encryption

• Isolation goals and mechanisms:
• Workload from workload isolation ⇒ virtual machines
• Host from workload isolation ⇒ virtual machines
• Workload from host isolation ⇒ confidential computing
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The main technology for confidential computing are encrypted memory pages and trusted execution
environments where the CPU has access to protected keys enabling the CPU to access and modify
encrypted memory content. The different CPU architectures currently compete for good confidential
computing designs and hence there are many competing solutions.

Hardware Description Year

AMD SEV-SNP AMD Secure Encrypted Virtualization Secure Nested Paging 2021
ARM CCA ARM Confidential Compute Architecture 2021
Intel SGX Intel Software Guard Extensions 2015
Intel TDX Intel Trust Domain Extensions 2023

Nvidia Confidential Computing 2022
IBM Secure Execution for Linux 2020

At the time of this writing, almost all large cloud providers (e.g., Microsoft Azure, Google Cloud, IBM
Cloud, Alibaba Cloud, Baidu Cloud) offer confidential computing products. There is obviously a bit
interest since confidential computing may be a prerequisite for moving even more computing into the
hands of large cloud providers.

The Confidential Computing Consortium (CCC) was formed in 2019 under the umbrella of the Linux
Foundation. The CCC is coordinating the development of software components enabling the use of
hardware supporting confidential computing.

Further online information:

• Web: Confidential Computing Consortium
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Intel Trust Domain Extensions

Intel introduced two main ISA extensions over time:

• Software Guard Extensions (SGX):

- SGX provides encrypted and integrity protected memory
- Applications can use a protected enclave where they can securely store data and
code

- Applications need to be refactored to make use of SGX
- OpenEnclave should make it easier to refactor applications

• Trust Domain Extensions (TDX):

- TDX provides encrypted memory at the virtual machine level
- Significantly reduces the cost of refactoring applications
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See [44] for an overview of Intel TDX technology.
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AMD Secure Encrypted Virtualization Secure Nested Paging

AMD introduced several ISA extensions over time:

• Secure Memory Encryption (SME):

- Uses a single key to encrypt system memory

• Secure Encrypted Virtualization (SEV):

- Uses one key per virtual machine to isolate guests and the hypervisor from one
another

• Secure Encrypted Virtualization-Encrypted State (SEV-ES):

- Encrypts all CPU register contents when a VM stops running

• Secure Encrypted Virtualization-Secure Nested Paging (SEV-SNP):

- Adds memory integrity protection to prevent malicious hypervisor-based attacks like
data replay, memory re-mapping, and more in order to create an isolated execution
environment
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ARM Confidential Compute Architecture

• Realm Management Extension (RME):

- Defines the hardware architecture for realms, which are used to protect data and
code

• Dynamic TrustZone technology:

- Allows TrustZone to be used by applications with large and dynamic memory
footprints

• Realm Management Monitor (RMM):

- Developing standard interfaces to firmware managing realms

• Open source trusted firmware projects:

- Creating new projects for confidential computing such as project Veraison, which
will deliver open-source software for constructing attestation verification services
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See [45] for an analysis of initial work on ARM’s Confidential Computing Architecture.
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Part VII

Malware Analysis and Detection

This part provides and introduction to malware analysis and malware detection. After introducing some
relevant terminology, we describe the malware analysis process and some tools commonly used for
malware analysis. We then explore tools to detect malicious software using malware signatures.

By the end of this part, students should be able to

• describe different kinds of malicious software;

• explain the notion of malware signatures and indicators of compromise;

• summarize the pyramid of pain and its implications;

• enumerate and explain the steps of a malware analysis process;

• distinguish static, dynamic, active, and hybrid malware analysis;

• outline the difference between packers, compressors, and obfuscators;

• write simple signatures using the YARA rule format;

• use the ClamAV malware detection engine and its associated tools.
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Malicious Software

Definition (malicious software)

Software designed to cause disruption to a computing system or to gain unauthorized
access to data or to interfere in any other way with computer security and data privacy
is called malicious software (or short malware).

• A specific piece of malware under investigation is called a malware sample.

• The term malware (sample) is often used even if there is not yet evidence that the
software under investigation has any malicious behavior.
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There are many differnet kinds of malicious software:

• Viruses: Malware that can produce copies of itself if an opportunity exists.

• Worms: Malware actively transmitting itself or creating copies of itself over a network.

• Trojans: Malware masquerading as a regular, benign program.

• Droppers: Malware used to download and install other pieces of malware on a system.

• Rootkits: Malware that tries to stay concealed by hiding in the operating system kernel.

• Backdoors: Malware giving attackerrs unauthorized access to computing systems.

• Ransomware: Malware encrypting or stealing data with the aim to request a ransom.

• Spyware: Malware spying on the interaction of users with computers.

• Adware: Malware presenting unwanted advertisements to users.

• AI-crafted malware: AI generated malware or malware constantly morphing itself using AI.

• . . .
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Malware Signatures

Definition (malware signatures)

Malware properties that can be used to identify specific items of malware are called
malware signatures.

• Some signatures, like whole-file hashes, are very precise but more fragile regarding
changes of the malware.

• Some signatures, like specific byte sequences embedded in an executable, are less
precise but less fragile against changes of the malware.

• Malware analysis ideally leads to malware signatures that can be used to scan for
malware instances efficiently.
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It is common practice to search regularly for malware signatures in electronic mail (particularly in at-
tachements), in executables and loadable libraries, in complex document formats (in particular those
allowing the embedding of executable code), in data files being uploaded or downloaded on the Internet
and so on.

It is important to understand that (i) a file matching a signature is not necessarily malicious (a so called
false positive) and (ii) a file not matching a signature may still be malicious (a so called false negative).
The goal is generally to minimize false positive and false negatives but it is difficult to achieve both
objectives.
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Indicators of Compromise

Definition (indicators of compromise)

An indicators of compromise (IoC) is an artefact observed on a computer system
indicating with high confidence a computer intrusion.

• IoCs generally do not provide evidence of an infection.

• It is challenging to keep track of the many known IoCs and their relevance.

• Thread intelligence platforms track IoCs to produce security insights and reports.

• Malware signatures can serve as IoCs but not all IoCs are malware signatures.
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Indicators of compromise can come in various forms. Some common examples are the following (see
RFC 9424 [46]):

• IP addresses used in network traffic

• Domain names used in network traffic or electronic documents

• Certificates used to sign documents or code

• Cryptographic hashes of malicious software or system artefacts

• Attack techniques that can be observed (e.g., in network traffic)

The open source threat intelligence platform Malware Information Sharing Platform (MISP) is a good
starting point. A significant problem in practice is the quality of the IoCs and the lack of widely used
common representations with well-defined semantics. It is easy to collect a lot of threat intelligence
information, it is much harder (and likely more expensive) to get high quality threat intelligence informa-
tion.

Further online information:

• Web: Malware Information Sharing Platform
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Pyramid of Pain

/\ MORE PAIN

/ \ LESS FRAGILE

/ TTPs \ LESS PRECISE

/------------\ |

/ Tools \ |

/--------------------\ |

/ Network/Host Artefacts \ |

/----------------------------\ |

/ Domain Names \ |

/------------------------------------\ |

/ IP Addresses \ |

/--------------------------------------------\ LESS PAIN

/ Hash Values \ MORE FRAGILE

/----------------------------------------------------\ MORE PRECISE
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On the lowest level of the pyramid of pain we have hash values. Hash values are very precise in
identifying, for example, a specific malicious executable file. However, hashes are also very fragile,
a recompilation of the malware with different compiler settings or some simple changes of meta data
embedded in an executable file leads to different hashes. Using highly precise and fragile signatures
to identify malicious files or observed actions can lead to many false negatives. Hence, hashes are
precise and fragile.

On the highest level of the pyramid are the tactics, techniques, and procedures (TTPs) used by an
adversary. At this much more abstract level the indicators of compromise are much less fragile but also
much less precise. Using less precise and less fragile indicators of compromise can lead to many false
positives.

The pyramid of pain captures that very precise and fragile signatures cause very little pain for an ad-
versary as it is easy to adapt and circumvent them. On the other hand, matching tactics, techniques,
and procedures used by an adversary causes large pain for the adversary since circumventing the
signatures requires to rethink how attacks are carried out.

For a more detailed discussion, see RFC 9424 [46].
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Malware Analysis Process

Definition (maleware analysis process)

A malware analysis process normally consists of the following steps:

1. Collecting and safely archiving malware samples

2. Documenting malware meta-data and contextual information

3. Preliminary analysis to determine subsequent steps

4. Technical analysis (static, dynamic, hybrid)

5. Producing an analysis report documenting the analysis process, the findings, and
providing recommendations for detection and mitigation

• It is essential to document all findings appropriately.
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The need for proper documents cannot be stressed enough. During the analysis process, it may be
necessary to involve other experts. Having proper documentation will make this much more efficient.
Furthermore, it may be necessary to provide evidence in legal procedures.
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Approaches to Malware Analysis

Definition (static malware analysis)

Static malware analysis investigates a malware sample without executing it.

Definition (dynamic malware analysis)

Dynamic malware analysis investigates a malware sample by executing it in a controlled
environment and observing its behavior.

Definition (activate malware analysis)

Active malware analysis is a form of dynamic malware analysis where user input is
generated to stimulate a malware sample to expose its malicious behaviour.

Jürgen Schönwälder (Constructor University) System Security: Malware Analysis and Detection CC-BY-NC-ND February 5, 2026 176 / 195

The combination of static and dynamic analysis is called hybrid malware analysis. Malware analysis is
becoming increasingly complex since malware authors write code to defeat malware analysis:

• Advanced malware may defeat static analysis by obfuscating the malicious code. This can go as
far as encrypting part of the malicious code with a key that is obtained dynamically.

• Advanced malware often attempts to defeat dynamic malware analysis approaches by trying to
detect whether it is running in a controlled environment (e.g., under the control of a debugger or in
a virtual environment). Some malware activates malicious behavior only after obtaining sufficient
evidence that it is running on a real system and interacting with a real human user.

Active malware analysis techniques have been studied quite extensively on malware targeting Android
devices [47].
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Precautions to Malware Analysis

• Use an offline virtual machine for malware analysis

• If feasible use separate hardware that can be completely wiped

• Frequent snapshots can speed up the analysis process and provide evidence

Jürgen Schönwälder (Constructor University) System Security: Malware Analysis and Detection CC-BY-NC-ND February 5, 2026 177 / 195

It is important to be careful when experimenting with potential malware. In fact, it is important to be care-
ful with any unknown software. It is thus recommended to setup virtual machines that are disconnected
from networks (or at least any production networks). Virtual machines have the benefit that they can be
easily discarded once any malicious behaviour has been observed. Of course, this assumes that the
malware cannot escape the isolation provided by the virtual executing environment. If this assumption
cannot be made, then it is best to use separate hardware that can be completely reset.

Virtual machines have the advantage that it is easy to make frequent snapshots. With snapshots, it is
possible to quickly revert to a known state of the analysis process. If real hardware has to be used, then
reverting to a previous state can be complex and time consuming.
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Reverse Engineering Tool Example: Radare2

• Radare2 is a framework for reverse-engineering and analyzing binaries.

• Radare2 features
• disassembler for many assembler programming languages
• analyzers of binary and excutable file formats
• a built-in debugger and interfaces to external debuggers

• Radare2 is a command-line application

• Various graphical user interfaces exist as 3rd party tools

• Radare2 is open source (GPLv3)
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Some essential commands:

Command Description
v Enter panel mode (exit using q, switch panels with tab)
V Enter visual mode (exit using q, flip views with p and P)

i Show general information about the loaded executable
is Show information about the symbols of an executable
iS Show information about the sections of an executable
iz Show strings contained in the data sections
izz Show strings contained in the whole executable
ia Show all information about the loaded executable
i? Show all information commands

s Seek to a new address (or show the current address)
s? Show all seek commands

a? Show all analysis commands

d? Show all debugger commands

pdf Disassemble function
p? Show all print commands

The output of commands can be filtered using the regular expressions regex by appending ~ regex.

Further online information:

• Web: Radare
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Packer and Polymorphic Code

Definition (packer)

A packer is a program compressing (and optionally encrypting) executables in order to
make them smaller and/or to potentially hide their internal structure.

Definition (polymorphic code)

Polymorphic code changes itself every time it is executed without changing the
functionality of the code.

• Packers just aiming to reduce the size of an executed are also called compressors.

• Packers aiming to obfuscate the original code are also called obfuscators.
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The Ultimate Packer for eXecutables (UPX) is an example of a packer intended to compress executables
(but not to obfuscate them).

Further online information:

• Web: UPX: the Ultimate Packer for eXecutables
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Malware Detection Example: YARA

• YARA is a tool to classify files using textual and binary pattern

• YARA was originally developed by Victor Alvarez (Virustotal)

• Initial release was 2013

• Written as C library (easily integrated into other tools)

• Open source license (BSD)

• Large collection of signature files

Jürgen Schönwälder (Constructor University) System Security: Malware Analysis and Detection CC-BY-NC-ND February 5, 2026 181 / 195

The YARA implementation has been influential due to its excellent signature format. YARA signatures
are easy to read and write and to maintain, which has made them very popular. Since the YARA
implementation comes as a C library with a liberal license, the YARA rule format has been integrated in
many other tools.

While the YARA tool has been designed to detect malware, it can be used for many other purposes. A
downside is that YARA itself does not handle container formats such as archive formats etc. However,
this is partially compensated by its extensibility. It is possible to extend the core YARA matching capa-
bilities using modules. While some modules are part of the YARA implementation, there is excellent
support for writing private modules extending YARA’s matching capabilities.

Further online information:

• Web: YARA — The pattern matching swiss knife for malware researchers
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YARA Signature Rule Format

• mandatory rule name

• optional metadata

- set of key/value pairs

• optional string definitions

- hexadecimal strings
- text strings
- regular expressions

• mandatory condition

- boolean, relational, bitwise operators
- counting operator
- offsets specifiers
- iterators
- rule references

rule example {

meta:

author = "Alice and Bob"

strings:

$hex = { 6d 6f 69 6e }

$text = "moin"

$regex = /moin/

condition:

$hex and $text and #regex > 0

}
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According to RFC 5322 [48], a valid Internet message has at most one subject line. This can be tested
using the following YARA rule:

1 rule sus_email_multiple_subject_lines

2 {

3 meta:

4 description = "A valid email has 0 or 1 subject lines."

5 references = "RFC 5322"

6 author = "Jürgen Schönwälder"

7 date = "2024-05-18"

8 strings:

9 $subject = /(^|\r|\n)Subject: /

10 condition:

11 #subject > 1

12 }

Below is a rules for identifying PDF files, a rule for identifying files containing the string ./sysec-slides.pdf,
and a rule to identify the lecture notes.

1 rule file_is_pdf

2 {

3 strings:

4 $start = "%PDF"

5 $end = "%%EOF"

6 condition:

7 $start at 0 and $end

8 }

9

10 rule file_contains_sysec_slides {

11 strings:

12 $sysec = "./sysec-slides.pdf"

13 condition:

14 #sysec > 1

15 }

16

17 rule sysec_notes

18 {

19 condition:

20 any of (file_*)

21 }
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Malware Detection Example: ClamAV

• ClamAV was originally developed by Tomasz Kojm

• Cisco Systems meanwhile owns ClamAV

• Initial release was 2001

• Written in C and C++

• Open source license (GPL)

• Huge collection of signatures
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ClamAV uses various file types for the different signature formats. Some basic signature formats are
the following:

1. Hash based signatures

A hash (md5, sha1, sha256, . . . ) is calculated over a file and files are matched against known
hashes of malicious files. Simple hash-based signatures can be created using sigtool:

1 sigtool --sha256 /usr/bin/date > /tmp/date.hdb
2 clamscan -d /tmp/date.hdb -i -r /usr/bin

2. Body signatures

Body signatures are search pattern that are searched for in files. The extended signature format
is used to search body signatures in files or parts of files.

1 hex=$(echo -n '1970-01-01 00:00 UTC' | sigtool --hex-dump)
2 echo "Date:6:*:$hex" > /tmp/date.ndb

3 clamscan -d /tmp/date.ndb -i /usr/bin

3. Logical signatures

Logical signatures combine other signatures using logic operators.

ClamAV is very strong in scanning files contained in container formats such as archives.

There are large collections of malware signatures for ClamAV that are regularly updated. The freshclam

utility can be used to up download and update the freshclam virus database. The clamscan command
line scanning utility will also warn if signatures have become outdated.

Further online information:

• Web: ClamAVNet
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Part VIII

Security Incident Detection and Response

This part discusses tools to detect security incidents and to respond to detected security incidents in
an automated or semi-automated way. Since it is difficult to fully protect an IT infrastructure against
attacks, it is highly desirable to detect attacks early and ideally before any significant damage has been
caused.

By the end of this part, students should be able to

• recall classes of intrusion detection systems;

• describe different intrusion detection methods;

• explain the relationship between intrusion detection and intrusion prevention systems;

• understand simple rules of a network intrusion detection system;

• outline the services provided by security information and event management systems;

• sketch the architecture of a typical security information and event management system.
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Jürgen Schönwälder (Constructor University) System Security: Security Incident Detection and Response CC-BY-NC-ND February 5, 2026 185 / 195

199



Intrusion Detection Systems

Definition (intrusion detection system)

An intrusion detection system (IDS) monitors a computing system for suspicious or
malicious activity.

Definition (network-based intrusion detection system)

A network-based intrusion detection system (NIDS) monitors a network for suspicious or
malicious traffic.

Definition (host-based intrusion detection system)

A host-based intrusion detection system (HIDS) monitors a single host for suspicious or
malicious activity.
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Intrusion detection systems have a long history. Initial concepts of intrusion detection systems have
been developed in the 1980s [49]. The original work was grounded on the Lampson Model and the idea
to model profiles how subjects interact with objects.

Network-based intrusion detection systems are widely deployed. The simplest form are extensions
of firewalls. More complex solutions do deep packet inspection. Since deep packet inspection has
scalability limits, flow-based intrusion detection was investigated at the beginning of this century [50].

Further information on host-based and network-based intrusion detection systems can be found in [51]
and in [52].
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Detection Methods

Definition (signature-based intrusion detection)

A signature-based intrusion detection method compares observed data against
signatures of known threats to identify possible intrusions.

Definition (anomaly-based intrusion detection)

An anomaly-based intrusion detection method is a statistical method for identifying
possible intrusions by classifying observed behavior as normal or abnormal.

• Intrusion detection systems supporting both signature-based and anomaly-based
methods are called hybrid intrusion detection systems.
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Intrusion Prevention Systems

Definition (intrusion prevention system)

An intrusion prevention system is an intrusion detection system that can trigger an
automated action to prevent or block intrusions that have been detected.
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Simple intrusion prevention systems, for example, monitor services for authentication failures, and they
configures firewall rules to filter traffic if a certain threshold of authentication failures has been crossed.

There are, however, much more complex systems that can draw conclusions from monitoring a collec-
tion of machines instead of a single machine.

When deploying intrusion prevention systems, it is important to analyze how they react in situations
where parts of a computing infrastructure are failing or undergoing major changes. There have been
reported cases where advanced automated intrusion prevention systems did prevent engineers from
recovering systems from failure.

Further online information:

• Wikipedia: Fail2ban
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Network Intrusion Detection Example: Snort

• created in the late 1990s by Martin Roesch

• signature-based intrusion detection

• optionally intrusion prevention

• simple programmer-friendly rule format (in particular snort 3)

• large collections of detection rules

• written in C/C++

• distributed under the GNU GPLv2 license
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Snort was first described by Martin Roesch in [53]. Version 3 of the Snort system uses detection rules
like the following:

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any

(

msg:"Attack attempt!";

flow:to_client,established;

file_data;

content:"1337 hackz 1337",fast_pattern,nocase;

service:http;

sid:1;

)

The rule matches all TCP traffic from an external server on port 80 to an internal network on any port
number where the traffic is HTTP and the content matches a certain signature. The generated log
message is set to Attack attempt!.

Further online information:

• Web: Snort — Network Intrusion Detection and Prevention System
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Network Intrusion Detection Example: Zeek

• created in the mid 1990s by Vern Paxson

• originally called Bro (renamed in 2018)

• extensible through the Zeek scripting language

• written in C/C++

• distributed under the BSD license
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A description of the original design of Zeek can be found in [54].

Further online information:

• Web: The Zeek Network Security Monitor
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Host-based Intrusion Detection Example: Wazuh

• Wazuh is a fork of OSSEC

• integration with open search

• written in C++

• distributed under the GNU GPLv2 license

Jürgen Schönwälder (Constructor University) System Security: Security Incident Detection and Response CC-BY-NC-ND February 5, 2026 191 / 195

The Wazuh system consists of Wazuh agents that are installed on endpoints (such as laptops, desk-
tops, servers, virtual machines) providing threat prevention, detection, and response capabilities. The
agents interact with the Wazuh server, which analyzes data received from the agents to provide thread
intelligence data. The Wazuh indexer provides a full-text search and analytic engine, which is accessible
from the Wazuh dashboard.

Wazuh is a fork of the intrusion detection system OSSEC, combining OSSEC with OpenSearch com-
ponents and adding additional features. It is developed since 2015 by the company Wazuh Inc. using
an open source business model.

Further online information:

• Web: Wazuh — Open Source XDR. Open Source SIEM

• YouTube: this Cybersecurity Platform is FREE
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Security Information and Event Management

Definition (security information and event management)

A security information and event management (SIEM) system (SIEM) provides
real-time analysis of security information and security events.

Services provided by a SIEM are:

• data aggregation

• data correlation

• generation of alerts

• collection of compliance data

• facilities for data retention

• support for forensic analysis
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A SIEM supports people responsible for the security of an IT infrastructure. Within larger organizations,
the organizational units responsible for IT security are sometimes called the security operations centre
(SOR).

Some SIEM solutions can take automated actions when certain alerts are generated. Such systems
are also known as security orchestration, automation, and response (SOAR) systems.

207



Detection and Response Acronyms

EDR Endpoint Detection and Response
(threat detection and response on endpoints)

MDR Managed Detection and Response
(external company providing EDR service)

XDR eXtended Detection and Response
(EDR extended to cover non-host systems plus some SIEM)

MXDR Managed eXtended Detection and Response
(external company providing XDR service)
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The terms Endpoint Detection and Response (EDR) and (the longer form) Endpoint Threat Detection
and Response (ETDR) are attributed to Anton Chuvakin, a computer security specialist working for
Gartner in 2013. The terms and acronyms have become popular in the industrial world with many
products offering such services.
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SIEM Example: Elastic Stack

The Elastic Stack consists of the following components:

• Elasticsearch: A distributed open source search and analytics engine

• Kibana: A dashboard for interacting with Elasticsearch

• Logstash: A data conversion pipeline feeding data into Elasticsearch

• Beats: A lightweight data shipper passing data to Logstash

All components are open source, mostly written in Java and Go.
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In 2021, Amazon Web Services created OpenSearch as a fork of the ELK stack due to license changes.
Since 2024, OpenSearch is a owned by the OpenSearch Software Foundation, which is an open project
under the Linux Foundation.

Further online information:

• Web: Elastic — The Search AI Company

• Web: OpenSearch
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