
Internet Management: Status and Challenges

2004 IEEE/IFIP Network Operations & Management Symposium

Seoul, Korea, 2004-04-19

Aiko Pras

a.pras@utwente.nl
University of Twente
7500 AE Enschede

The Netherlands

Jürgen Schönwälder

j.schoenwaelder@iu-bremen.de
International University Bremen

28759 Bremen
Germany

mailto:pras@cs.utwente.nl
mailto:j.schoenwaelder@iu-bremen.de


Copyright Notice

Copyright c© 2004 Jürgen Schönwälder, Bremen, Germany

Copyright c© 2004 Aiko Pras, Enschede, The Netherlands

All rights reserved.

No part of these sheets may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without obtain-
ing written permission of the author.



Outline of the Tutorial

1. IETF Working Group Overview (Jürgen Schönwälder, 20 min)

2. SNMP Version 3 (SNMPv3) (Aiko Pras, 45 min)

3. SNMP Improvements (Jürgen Schönwälder, 35 min)

4. XML-based Management (Jürgen Schönwälder, 35 min)

5. Web Services for Management (Aiko Pras, 45 min)



1 IETF Working Group Overview

1.1 MIB Review Guidelines

1.2 IPv6 Support and Management

1.3 Entity MIB Evolution

1.4 Distributed Management

1.5 Middlebox Management

1.6 IEEE 802 Management

1.7 ATM / MPLS / xDSL / Cable Modems

1.8 Printer, IP Storage, RMON

1.9 Extensible Provisioning Protocol



1.1 MIB Review Guidelines

• All MIB modules published by the IETF go through a review process.

• There was quite some variation what MIB doctors checked and agreed upon.

• Many discussions were needed to identify the common rules used by the
MIB doctors.

• The MIB Review Guidelines draft documents some of the SMI folklore and
the CLRs (crappy little rules or consistency language rules) that are checked
during MIB review.

• MIB module authors are encouraged to check their MIBs against these rules
before publishing them or submitting them to the IESG.

• A subset of the rules that can be automatically checked has been added to
the smilint MIB module checker of the libsmi package.

• Guidelines document is of high quality and relatively stable. Should go to
the IESG sometime during this year.



1.2 IPv6 Support and Management

• MIB modules under revision:

– TCs for Internet Network Addresses (RFC 3291 update)

– IP-MIB (RFC 2011 update)

– IP-FORWARD-MIB (RFC 2096 update)

– TCP-MIB (RFC 2012 update)

– UDP-MIB (RFC 2013 update)

– TUNNEL-MIB (RFC 2667 update)

• Original IPv6 MIB modules published in 1998 will be made historic.

• Documents being finalized, should go to the IESG soon.



1.3 Entity MIB Evolution

• The ENTITY-MIB models physical entities (e.g., fans, sensors, cpus, ports,
modules, chassis) that make up a device.

• Represents the containment hierarchy of physical entities

• Very essential MIB module (comparable to the IF-MIB)

• Improvements made during the last months:

– 3rd revision of the ENTITY-MIB (to become Draft Standard)

– ENTITY-SENSOR-MIB extension for sensors (RFC 3433)

– MIB module providing state objects for physical entities

• 3rd version of the ENTITY MIB waiting for publication, state extension being
finalized.



1.4 Distributed Management

• Recent work was centered around the definition of a general alarm reporting
mechanism, based on some of the ITU work in this space (X.733).

• An additional module provides an alarm reporting control interface, again
based on some ITU work in this space (M.3100 Amendment 3).

• Other work items are concerned with the progression of DISMAN MIB mod-
ules to Draft Standard.

• Some discussion about the complexity of the event and expression MIB
modules.

• Documents:

– Alarm MIB

– Alarm Reporting Control MIB

– Ping, Traceroute, Lookup MIB (RFC 2925) Revision

• Documents basically ready for submission to the IESG.



1.5 Middlebox Management

• A middlebox is a network intermediate device (NAT, firewall) that needs to
be configured in order to make applications work (“drilling holes into middle-
boxes”).

• Working group went through a detailed development process:

– Middlebox Communication Architecture and Framework (RFC 3303)

– Middlebox Communications (MIDCOM) Protocol Requirements (RFC 3304)

– Middlebox Communications (MIDCOM) Protocol Evaluation

– MIDCOM Protocol Semantics

– Middlebox Communications (MIDCOM) Protocol Managed Objects Anal-
ysis

– Definitions of Managed Objects for Middlebox Communication

• Most WG members wanted a simple special purpose protocol and they get
an SNMP MIB which nobody really wanted. Is this a model for the future?



1.6 IEEE 802 Management

• Most of the IEEE 802 documents are doing in cooperation with the IEEE.

• Newer Documents:

– Power Ethernet MIB (RFC 3621)

– Ethernet-like Interface Types MIB (RFC 3635)

– IEEE 802.3 Medium Attachment Units MIB (RFC 3636)

– Ethernet WAN Interface Sublayer MIB (RFC 3637)

– Port Access Control MIB

– Ethernet in the First Mile (EFM) Common MIB

– Ethernet in the First Mile Copper (EFMCu) Interfaces MIB

– Ethernet Passive Optical Networks MIB

– VLAN Textual Convention MIB

• Discussions about moving MIB development control over to the IEEE with
MIB review service provided by the IETF.



1.7 ATM / MPLS / xDSL / Cable Modems

• Several working groups produce a stream of interface type specific MIB mod-
ules.

• Newer Documents:

– Optical Interface Type (RFC 3591)

– SONET/SDH MIB Revision (RFC 3592)

– Supplemental Managed Objects for ATM Interface (RFC 3606)

– DS1 / E1 / DS2 / E2 / DS3 / E3 Interface Type MIBs Revision

– Many (perhaps too many?) MIB modules related to MPLS and traffic
engineering

– Very High Speed Digital Subscriber Lines (VDSL) MIB (RFC 3728)

– VDSL Extensions for Single Carrier Modulation (SCM) Line Coding

– VDSL Extensions for Multiple Carrier Modulation (MCM) Line Coding

– Many MIB modules related to Cable Modems.

• The MPLS related MIB modules probably need to get consolidated.



1.8 Printer, Fiber Channel, iSCSI, Remote Monitoring

• Several working groups produce MIB modules related to printers, storage
technologies and continue the RMON monitoring suite.

• Newer Documents:

– Printer MIB and Finisher MIB (waiting for publication)

– Fiber Channel MIB modules are being revised / extended

– iSCSI MIB modules are currently being defined

– RMON Overview Document (RFC 3577)

– Application Performance Measurement MIB (RFC 3729)

– Transport Performance Metrics MIB

– Synthetic Sources for Performance Monitoring Algorithms MIB

– Real-time Application Quality of Service Monitoring MIBs



1.9 Extensible Provisioning Protocol

• Application layer client-server protocol for the provisioning and management
of objects stored in a shared central repository

• Target application area is automated interaction with registries

• Extensible Provisioning Protocol Features

– XML based protocol (commands / responses)

– Session management commands (login, logout)

– Query commands (check, info, poll, transfer)

– Object transform commands (create, delete, renew, transfer, update)

– Mapping over TCP and BEEP defined (SCTP not detailed)

• Important piece of work done in the Applications Area and largely ignored
by the Operations and Management Area...



3 SNMP Improvements

3.1 Next Generation Structure of Management Information (SMIng)

3.2 SNMP over TCP

3.3 SNMP Payload Compression

3.4 Extended SNMP Protocol Operations

3.5 AES Cipher Algorithm for USM

3.6 SNMP Uniform Resource Locators

3.7 Session-Based SNMP Security Model



3.1 Next Generation Structure of Management Information

• Problems:

– SMIv2 misses some important base types such as 64 bit numbers.

– SMIv2 lacks reusable composite data types.

– SMIv2 syntax depends on ASN.1 and is generally not well understood
and implemented correctly.

– SMIv2 parsers are difficult to write due to a lack of a well defined gram-
mar.

– SMIv2 is not extensible.

– Desirable to use the same data definitions with SNMP and COPS-PR.

• Solution:

– A next generation data modeling language called SMI (SMIng).

– Detailed objectives have been documented in RFC 3216.

– Soon to be published as Experimental RFCs.



SMIng Module Structure

SMIng type and class definitions

SNMP protocol mapping

COPS−PR protocol mapping

protocol independent

no instance naming

protocol dependent

instance naming

SMIng module

• Reusable type and class definitions are seperated from protocol specific
mappings.

• Abstraction of instance naming is the most difficult problem to solve.



SMIng Syntax

• Programmer friendly syntax:

– look and feel similar to Java, C, C++, ...
– consistent structure of statements (easier to memorize)

• Easy to implement and efficient to parse:

– consistent syntactic structure simplifies grammar
– no forward references (except in cases where they are unavoidable)
– statement seperators help to recover from parse errors
– complete grammar specified in ABNF (RFC 2234)

• Language extensibility:

– declaration of new statements, parsers skip unknown statements

=⇒ Not everyone in the IETF agrees that the ASN.1 syntax is ugly...



SMIng Base Types and Core Derived Types

(includes S
M

Iv2 base types)

S
M

Ing base types

(includes som
e S

M
Iv2 textual conventions)

Integer64

O
bjectIdentifier

B
its

O
ctetS

tring

Float128

Float64

Float32

U
nsigned64

Integer32

E
num

eration

Tim
eS

tam
p32

U
nsigned32

C
ounter32

G
auge32

Tim
eTicks32

G
auge64

C
ounter64

D
isplayS

tring

D
ateA

ndTim
e

D
isplayS

tring255

IpA
ddress

O
paque

M
acA

ddress

P
hysA

ddress

U
tf8S

tring
U

tf8S
tring255

Tim
eTicks64

Tim
eS

tam
p64

TruthV
alue

Tim
eInterval64

Tim
eInterval32

P
ointer

S
M

Ing derived types



SMIng Attributes and Classes

• Classes encapsulate a set of attributes.

• Attributes have an associated type which can be

– a base type, or
– a derived type, or
– a class (composite type).

• Classes can have associated events.

• Every event in SMIng is associated with a class.

• Events can be mapped to notification messages in protocol mappings.

• Methods are not supported, but might be added in the future.



SNMP Protocol Mapping

• Defines how SMIng base data types are mapped to SNMP data types.

• Uses Opaque wrapping to support new base types.

• Complex composite types are flattened and mapped to table rows or groups
of scalars.

• OID names are assigned in mapping statements.

• SNMP specific derived types (e.g. RowStatus) are defined in a mapping
module.



SMIng Example

class BasicInOutErrStats {
attribute inOctets { type Counter32; ... };
attribute inErrors { type Counter32; ... };
attribute outOctets { type Counter32; ... };
attribute outErrors { type Counter32; ... };
...

};

class Interface {
attribute index { type InterfaceIndex; ... };
attribute stats { type BasicInOutErrStats; ... };
...

};

snmp {
table ifTable {

oid interfaces.2;
index (ifIndex);
object ifIndex { implements Interface.index; ... };
object ifInOctets { implements Interface.stats.inOctets; ... };
object ifInErrors { implements Interface.stats.inErrors; ... };
object ifOutOctets { implements Interface.stats.outOctets; ... };
object ifOutErrors { implements Interface.stats.outErrors; ... };
...

};
...

};



3.2 SNMP over TCP (RFC 3430)

• Motivation:

– Support larger message sizes to improve bulk transfers.

– Support session-based security mechanisms.

– No vehicle to turn unconfirmed operations into confirmed operations.

• Specification:

– Optional transport mapping (UDP still has to be available).

– Originator of a request-response transaction chooses the transport pro-
tocol for the entire transaction.

– Framing relies on ASN.1/BER message length information.

– Implementations must provide buffers to reassemble fragmented mes-
sages.

– Piggybacking of TCP ACKs important!



3.3 SNMP Payload Compression

• Motivation:

– Lossless compression of SNMP payloads with minimal processing over-
head.

– Improve encoding efficiency to ship more data in SNMP messages.

• Requirements:

– Compression must happen before encryption.

– Each SNMP message is compressed and decompressed by itself without
any relation to other SNMP messages (”stateless compression”).

– The size of a compressed SNMP message must never exceed the size
of the uncompressed SNMP message (”non-expansion policy”).

– The abstract syntax of compressed SNMP messages must be defined
using ASN.1 to ensure that compressed SNMP messages have a valid
ASN.1/BER encoding.

– SNMP payload compression should be able to support multiple compres-
sion algorithms. It is desirable to define common compression algorithms
in order to achieve interoperability.



OID Delta Compression (ODC)

• Reduce the OID overhead inherent in SNMP messages by encoding OIDs
of variable names as deltas to the previous OID

• The deltas are expressed by a combination of the following primitives:

1. Substitution of a single sub-identifier at a certain position
2. Substitution of ranges of sub-identifiers at a given start position
3. Truncation and enlargement of the OID

• Algorithm:

1. Loop through the SNMP PDU until you find an OID name value pair
(varbind).

2. If it is the first varbind, make a copy of the OID, pass it to the output buffer
and continue with the next varbind.

3. Otherwise, compute the delta to the last OID and BER encode it into the
CompOID value.

4. If the CompOID representation is larger than the OID, pass the OID to the
output buffer, else pass the CompOID to the output buffer.

5. Update the last OID and goto step two if there are additional varbinds.



3.4 Extended SNMP Protocol Operations

• Additional protocol operations can substantially improve SNMP’s capabili-
ties:

– GetConfig and SetConfig to read and write configuration settings.

– CallRequest and CallResponse to invoke operations.

– GetTable to retrieve complete tables with filtering and OID suppression.

– Create and Delete to address the complexity of the RowStatus mech-
anism.

– Object-oriented PDUs with transaction support.

=⇒ There is no agreement which primitives are needed in which order and com-
plexity.



3.5 AES Cipher Algorithm for USM

• Problem:

– The SNMP USM security model uses the DES cipher algorithm which is
not considered very secure these days.

– The Advanced Encryption Standard (AES) is widely accepted as a stronger
replacement for DES

• AES Cipher Algorithm for the USM:

– AES in Cipher Feedback Mode (CFB) with a key size of 128 bits.
– Defines AES key localization and creation of the 128 bit initialization vec-

tor (IV) from the localized key.

=⇒ Internet Draft in RFC publication queue.

=⇒ Implementations available.



3.6 SNMP Uniform Resource Locators
• Problem:

– No common mechanism to indicate how to contact the device for man-
agement.

– Especially important when out-of-band IP management is used via a sep-
arate management interface

• SNMP Uniform Resource Locators

– Use URL notation to identify SNMPv3 management communication end-
points.

– Transport protocol selection (UDP vs. TCP) is implicit.
– Examples:

snmp://snmp.example.com
snmp://tester5@snmp.example.com:8161
snmp://snmp.example.com/bridge1
snmp://snmp.example.com/bridge1;engine=0x800002b804616263

snmp://snmp.example.com//1.3.6.1.2.1.1.3.0
snmp://snmp.example.com/bridge1/1.3.6.1.2.1.2.2.1.8.*

=⇒ Internet Draft under active revision.

=⇒ Implementations available (fibre channel MIBs, scli )



3.7 Session-Based SNMP Security Model

• Problem:

– The SNMP USM security model and VACM access control model are self-
contained (following the original SNMP design goals) and do not integrate
well into deployed authentication/authorization infrastructures.

– Operators prefer to keep the number of authentication/authorization sys-
tems that must be managed to a minimum.

• Session-based security model (SSM):

– Uses established security protocols, such as TLS/SSL or SSH.
– SSM binds session to a connection, requiring SNMP over TCP.
– Must map security protocol parameters into the SNMP parameters securityName

and securityLevel .
– Improved efficiency compared to USM under normal network conditions

due to shared state about the security session.
– Authentication should integrate with technologies such as Radius or SASL.

=⇒ Details still need to be worked out - no working group yet.



4 XML-based Management

4.1 XML Technologies Overview

4.2 NetConf Proposal based on JunoScript

4.3 NetConf Proposal using Web Services

4.4 SMI Translations and SNMP Gateways



4.1 XML Technologies Overview
XML The eXtensible Markup Language is a standard markup language that al-

lows application s to exchange structured documents.

XSD The XML Schema Definition language offers facilities for describing the struc-
ture and constraining the contents of XML documents.

XSL The eXtensible Stylesheet Language is a family of recommendations for
defining XML document transformation and presentation.

XSLT The eXtensible Stylesheet Language Transformations is a language for trans-
forming XML documents into other XML documents.

XPATH The XML Path Language is a language for addressing parts of an XML doc-
ument.

XQUERY The XML Query Language is a query langauge to extract data from XML
documents.

SOAP The Simple Object Access Protocol is for exchanging XML encoded mes-
sages.

WSDL Web Services Description Language is a language to describe the behavior
of collections of XML encoded messages.

DOM The Document Object Model is a way to represent XML documents in mem-
ory.

SAX SAX is an event-driven API to parse and access XML documents.



Network-Wide Configuration Management Model

Network−Wide
Configuration

Database

Translator
Configuration Data

Network Topology
Information

Network Status and
Performance Information

Service Management
Systems

Policy Management
Systems

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

=⇒ Treating configurations as documents leads naturally to the application of
XML.



4.2 NetConf Proposal based on JunoScript

XML
parser

management
daemon

renderingCLI

XML

Instrumentation

• Juniper Networks developed JunoScript as a programmatic interface to (and
within) their router products.

• JunoScript uses XML for data representation and the protocol messages.

• The Juniper command line interface is based internally on JunoScript.

• JunoScript is a simple RPC protocol running of Telnet or SSH.

• JunoScript provides the primitives to build robust network-wide configuration
management systems (timed confirmed commits).



Example JunoScript RPC Interaction

<rpc>
<get-interface-information>

<statistics/>
</get-interface-information>

</rpc>

<rpc-reply>
<interface-information>

<InOctets>123456</InOctets>
<InErrors>789</InErrors>
<OutOctets>654321</OutOctets>
<OutErrors>0</OutErrors>

</interface-information>
</rpc-reply>

• All RPC interactions over a single connection form together a single XML
document.

• Filtering is based on simple subtree selection.



NetConf Layering Model

Content

Operations

RPC

Transport

Layer Example

<get−config>, <edit−config>

<rpc>, <rpc−reply>

BEEP, SSH, HTTPS, ...

Configuration Data

• Security has to be provided by the transport layer.

• The operations layer provides the primitives to handle configurations.

• The content layer is currently not subject to standardization.



NetConf Operations (mostly finalized)
• get-config(source, filter)

Retrieve all or part of a specified configuration from a given source.

• edit-config(target, options, config)
Edit target configuration, merge / replace / delete embedded in config data.

• copy-config(source, target)
Create or replace an entire configuration with the contents of the source.

• delete-config(target)
Delete a configuration datastore.

• get(filter)
Retrieve device state information.

• validate(source)
Validate the contents of the specified configuration (capability).

• lock(source)
Lock a configuration source.

• unlock(config)
Unlock a configuration source.

• commit(confirmed, confirmed-timeout)
Commit candidate config as the new current configuration (capability).



NetConf over BEEP Request Example (under discussion)

MSG 1 42 . 24 291
Content-Type: text/xml; charset=utf-8
<rpc message-id="105" xmlns="http://ietf.org/xmlconf/1.0/base">

<get-config>
<source>

<running/>
</source>
<config xmlns="http://example.com/schema/1.2/config">

<users/>
</config>
<format>xml</format>

</get-config>
</rpc>
END

• BEEP (RFC 3080) is a generic application protocol kernel for connection-
oriented, asynchronous interactions.

• Supports exchange styles MSG/RPY, MSG/ERR, MSG/ANS, multiple chan-
nels, application layer framing and fragmentation.

• Integrates into SASL (RFC 2222) and TLS (RFC 2246) for security.



NetConf over BEEP Request Example (cont.)

RPY 1 42 . 24 705
<rpc-reply message-id="105" xmlns="http://ietf.org/xmlconf/1.0/base">

<config xmlns="http://example.com/schema/1.2/config">
<users>

<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>

</user>
<user>

<name>fred</name>
<type>admin</type>
<full-name>Fred Flintstone</full-name>

</user>
<user>

<name>barney</name>
<type>admin</type>
<full-name>Barney Rubble</full-name>

</user>
</users>

</config>
</rpc-reply>
END



4.3 NetConf Proposal using Web Services

• Instead of inventing a special purpose RPC protocol, use Web Service stan-
dards.

• Pros:

– more developers available
– more tools available
– better integration with IT infrastructure

• Cons:

– base technology not under control of the IETF
– unneeded complexity
– interoperability problems (immature technology)
– HTTP is not a good match for a generic application protocol kernel

• Ongoing debate in the IETF how to weight the arguments.



NetConf WSDL Definition Example

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ietf.org/netconf/1.0/soap"
xmlns:xb="http://ietf.org/netconf/1.0/base"
targetNamespace="http://ietf.org/netconf/1.0/soap"
name="http://ietf.org/netconf/1.0/soap">

<import namespace="http://ietf.org/netconf/1.0/base" location="base.xsd"/>

<message name="rpcRequest">
<part name="in" element="xb:rpc"/>

</message>
<message name="rpcResponse">

<part name="out" element="xb:rpc-reply"/>
</message>

<portType name="rpcPortType">
<operation name="rpc">

<input message="tns:rpcRequest"/>
<output message="tns:rpcResponse"/>

</operation>
</portType>



NetConf WSDL Definition Example (cont.)

<binding name="rpcBinding" type="tns:rpcPortType">
<SOAP:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="rpc">

<SOAP:operation/>
<input>

<SOAP:body use="literal" namespace="http://ietf.org/netconf/1.0/base"/>
</input>
<output>

<SOAP:body use="literal" namespace="http://ietf.org/netconf/1.0/base"/>
</output>

</operation>
</binding>

</definitions>

• SOAP binding based on a hypothetical location for the NETCONF schema.

• Warning: This example mapping does not provide security!



NetConf WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://ietf.org/netconf/1.0/soap"
targetNamespace="urn:myNetconfService"
name="myNetconfService.wsdl">

<import namespace="http://ietf.org/netconf/1.0/soap" location="soap.wsdl"/>

<service name="netconf">
<port name="rpcPort" binding="xs:rpcBinding">

<SOAP:address location="http://localhost:8080/netconf"/>
</port>

</service>
</definitions>

• Service definition based on a hypothetical location for the NETCONF/SOAP
WSDL definitions.



NetConf over SOAP/HTTP Example

POST /netconf HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, text/*
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: "netconfsession:123"
Content-Length: 470

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<rpc id="101" xmlns="http://ietf.org/netconf/1.0/base">

<get-config>
<source>

<running/>
</source>
<config xmlns="http://example.com/schema/1.2/config">

<users/>
</config>
<format>xml</format>

</get-config>
</rpc>

</soapenv:Body>
</soapenv:Envelope>



NetConf over SOAP/HTTP Example (cont.)

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<rpc-reply id="101" xmlns="http://ietf.org/netconf/1.0/base">

<config xmlns="http://example.com/schema/1.2/config">
<users>

<user>
<name>root</name>
<type>superuser</type>

</user>
<user>

<name>fred</name>
<type>admin</type>

</user>
<user>

<name>barney</name>
<type>admin</type>

</user>
</users>

</config>
</rpc-reply>

</soapenv:Body>
</soapenv:Envelope>



NetConf Open Issues

• Transport: SSH (must), BEEP (may), SOAP/HTTP[S]? (may), SCTP? ...

• Filtering: ad-hoc subtree?, XPATH?, XQUERY?, XPATH light?, ...

• Protocol: primitives? locking mandatory? XML usage?

• Modeling: XML Schema?, RELAXng?, SMIng?, ...

• Integration: SNMP?, CLI?, ...



4.4 SMI Translations and SNMP Gateways

defines the structure of

used to define

SMIv2

MIB modules

database of
proprietary

SNMP data
XML document

definition
XML Schema

XML Schema
(language)Data Definition Language

Data Model

Instance Data

• No standard format for storing / exchanging instance data in the SNMP
world.

• Automatically translate MIB modules into XML schemas to save investments.

• Such translations should follow the ”XML style” as close as possible.



Multiple ”Contexts” per XML Document

A single document may
contain data

• of multiple engines (agents)

– @ipaddr

– @hostname

– @port

• of multiple per-agent contexts

– @context or

– @community

• of multiple points in time

– @time

<?xml version="1.0"?>
<snmp-data [...]>

<context
ipaddr="134.169.246.1"
hostname="ciscobs.rz.tu-bs.de"
port="161"
community="public"
time="2003-03-10T10:31:16Z">

[...context data...]
</context>

<context [...]>
[...context data...]

</context>

[...]
</snmp-data>



No ”deep” Element Nesting

• 1st level element <snmp-data>
independent root element
(not bound to a specific MIB, agent, or point in time)

• 2nd level elements <context>

• 3rd level elements e.g. <system> , <ifEntry ifIndex="1">

– groups of scalar elements
– table rows, identified through index attributes

• 4th level elements e.g. <sysContact> , <ifInOctets>

– scalar elements
– columnar elements (also of table augmentations)

• deeper level elements
only for ”table-in-table” relationships, hence quite rare

=⇒ Note: The element nesting is not based on the OID tree.



Using XML Namespaces to Identify Modules

• Each MIB will be compiled to a separate XML Schema that defines an ac-
cording namespace:

<xsd:schema
targetNamespace="http://example.com/IF-MIB" [...]>

[...]
</xsd:schema>

• Imports from MIB modules are translated to imports of namespaces:

<xsd:schema [...]
xmlns:SNMPv2-MIB="http://example.com/SNMPv2-MIB" [...]>

[...]
<xsd:import

namespace="http://example.com/SNMPv2-MIB" [...]/>
[...]

</xsd:schema>

• Elements can be named uniquely with namespace prefixes:

<IF-MIB:interfaces>
<IF-MIB:ifNumber>7</IF-MIB:ifNumber>

</IF-MIB:interfaces>



Value Representations and Schema Definitions

• numeric values

XML: display hints applied, represented in decimal digits
Schema: range restrictions (<minInclusive> , <maxInclusive> )

display hints (<fractionDigits> )

• octet strings with display hints

XML: represented as strings conforming to display hints,
Schema: DISPLAY-HINTs converted to <pattern> reg-exp’s (as good as possible)

• octet strings without display hints

XML: represented as sequences of 2-digit hex values
Schema: based on the hexBinary type

• enumeration and bit set values

XML: represented as (sequences of) labels
Schema: (<list> s of) <enumeration> values



Example XML Document

<snmp-data "xmlns=http://example.com/TCP-MIB">
<context ipaddr="134.169.34.81" hostname="tom.example.com"

port="161" community="public" time="2003-03-17T11:07:53Z">
<TCP-MIB:tcp>

<TCP-MIB:tcpRtoAlgorithm>other</TCP-MIB:tcpRtoAlgorithm>
<TCP-MIB:tcpRtoMin>0</TCP-MIB:tcpRtoMin>
[...]

</TCP-MIB:tcp>
<TCP-MIB:tcpConnEntry

tcpConnLocalAddress="0.0.0.0" tcpConnLocalPort="9"
tcpConnRemAddress="0.0.0.0" tcpConnRemPort="0">

<TCP-MIB:tcpConnState>listen</TCP-MIB:tcpConnState>
</TCP-MIB:tcpConnEntry>
<TCP-MIB:tcpConnEntry

tcpConnLocalAddress="134.0.0.0" tcpConnLocalPort="42077"
tcpConnRemAddress="134.0.0.0" tcpConnRemPort="6010">

<TCP-MIB:tcpConnState>established</TCP-MIB:tcpConnState>
</TCP-MIB:tcpConnEntry>

</context>
</snmp-data>



SNMP/XML Gateway Prototype (TU Braunschweig)

HTTP
Engine

(with
CGI
or

Interface)

SNMP
Engine

(Command
Generator

and
Notification
Originator)

HTTP GET

HTTP POST

(HTTP POST)

TranslatorXML
Parser DOM

XPath
Interpreter

SNMP Set

SNMP Get*

SNMP Trap

Notification Schema
Servlet

Log Cache Repository

Example: Retrieve the descriptions of the interfaces at talisker.ibr.cs.tu-bs.de
that are currently in operation and transmitted or received at least one packet:

$ lynx -dump ’http://www.ibr.cs.tu-bs.de/snmp-xml-gw?\
get=/snmp-data/context[@hostname="talisker.ibr.cs.tu-bs.de"]\
/ifEntry[ifOperStatus="up" and (ifOutOctets > 0 or ifInOctets > 0)]\
/ifDescr’



Online Resources

• Internet Engineering Task Force (IETF) http://www.ietf.org/

• IETF OPS Area http://www.ops.ietf.org/

• Internet Research Task Force (IRTF) http://www.irtf.org/

• Network Management Research Group (NMRG) http://www.irtf.org/

• The SimpleTimes http://www.simple-times.org/

• The Simple Web http://wwwsnmp.cs.utwente.nl/

• Tutorial Slides http://www.faculty.iu-bremen.de/schoenw/


