
Connecting Wireless Sensor
Networks to the Internet - a 6lowpan

Implementation for TinyOS 2.0

Matúš Harvan

Jacobs University Bremen
Bremen, Germany

Universität Bremen, 25 May 2007

Matúš Harvan 6lowpan for TinyOS 2.0 1

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 2

Wireless Sensor Networks

Definition

A wireless sensor network (WSN) is a wireless
network consisting of spatially distributed
autonomous devices using sensors to
cooperatively monitor physical or environmental
conditions, such as temperature, sound, vibration,
pressure, motion or pollutants.

Small computers with a wireless interface

Smart alternatives to dumb RFID tags

Matúš Harvan 6lowpan for TinyOS 2.0 3

Wireless Sensor Networks

Definition

A wireless sensor network (WSN) is a wireless
network consisting of spatially distributed
autonomous devices using sensors to
cooperatively monitor physical or environmental
conditions, such as temperature, sound, vibration,
pressure, motion or pollutants.

Small computers with a wireless interface

Smart alternatives to dumb RFID tags

Matúš Harvan 6lowpan for TinyOS 2.0 3

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 4

TelosB Hardware Platform

TI MSP430 MCU
16 bit RISC
at 8 MHz

16 registers

10kB RAM

48kB Flash

16kB EEPROM

Matúš Harvan 6lowpan for TinyOS 2.0 5

MicaZ Hardware Platforms

Atmel AVR
ATmega 128

8 bit RISC

32 registers

4kB RAM

128kB Flash

4kB EEPROM

Matúš Harvan 6lowpan for TinyOS 2.0 6

Mica Sensor Board MTS310

Matúš Harvan 6lowpan for TinyOS 2.0 7

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 8

Radio – IEEE 802.15.4

IEEE 802.15.4

250 kbps (16 channels, 2.4 GHz ISM band)

personal area networks (10 meters range)

PHY and MAC layer covered

Link encryption (AES) (no key management)

Full / Reduced function devices

ChipCon CC2420

popular 802.15.4 air interface

128byte TX/RX buffer

used on the TelosB and MicaZ motes

Matúš Harvan 6lowpan for TinyOS 2.0 9

Radio – IEEE 802.15.4

IEEE 802.15.4

250 kbps (16 channels, 2.4 GHz ISM band)

personal area networks (10 meters range)

PHY and MAC layer covered

Link encryption (AES) (no key management)

Full / Reduced function devices

ChipCon CC2420

popular 802.15.4 air interface

128byte TX/RX buffer

used on the TelosB and MicaZ motes

Matúš Harvan 6lowpan for TinyOS 2.0 9

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 10

TinyOS

embedded operating system for WSN motes

written in the nesC language

event-driven architecture

no kernel/user space differentiation

single shared stack

static memory allocation only (no malloc/free)

no process or memory management

components statically linked together

Matúš Harvan 6lowpan for TinyOS 2.0 11

nesC: Programming Language for
Embedded Systems

Programming language:
a dialect/extension of C
static memory allocation only (no malloc/free)
whole-program analysis, efficient optimization
race condition detection

Implementation:
pre-processor – output is a C-program, that is
compiled using gcc for the specific platform
statically linking functions

For more details, see [3]

Matúš Harvan 6lowpan for TinyOS 2.0 12

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 13

6lowpan – IPv6 over 802.15.4

IETF working group (IPv6 over low-power
wireless personal area networks)

6lowpan header/dispatch value before the IP
header

layer 2 header (802.15.4)
optional Mesh Addressing Header (6lowpan)
optional Broadcast Header (6lowpan)
optional Fragmentation Header (6lowpan)
IPv6 header (6lowpan-compressed)
layer 4 header (i.e. 6lowpan compressed UDP header)
layer 4/application payload

Table: 802.15.4 frame with 6lowpan payload

Matúš Harvan 6lowpan for TinyOS 2.0 14

6lowpan – Details

header compression
IPv6 and UDP headers can ideally be compressed
from 40 + 8 to 2 + 4 bytes
no prior communication for context estabilishment
necessary

fragmentation below the IP layer
IPv6 requires a minimum MTU of 1280 bytes, but
802.15.4 can at best provide 102 bytes
Fragmentation Header

mesh networking support
Mesh Addressing Header and Broadcast Header
routing algorithms and further details out of scope
of the 6lowpan working group

Matúš Harvan 6lowpan for TinyOS 2.0 15

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 16

Design principles

run on the TelosB and MicaZ motes
fit into 4KB of RAM

easily readable and maintainable code preferred
over optimizing to squeeze into the least
possible amount of memory

Matúš Harvan 6lowpan for TinyOS 2.0 17

Modules and interfaces

IPC.nc – configuration, used by the
appliciation

IPP.nc – module with the implementation

UDPClient.nc – interface used by the
application

IP.h – included by the application

IP internal.h – used only by IPC and IPP

Matúš Harvan 6lowpan for TinyOS 2.0 18

UDPClient interface

UDPClient
interface UDPClient {

command error_t listen(uint16_t port);

command error_t connect(const ip6_addr_t *addr, const uint16_t port);

command error_t sendTo(const ip6_addr_t *addr, uint16_t port,

const uint8_t *buf, uint16_t len);

command error_t send(const uint8_t *buf, uint16_t len);

event void sendDone(error_t result, void* buf);

event void receive(const ip6_addr_t *addr, uint16_t port,

uint8_t *buf, uint16_t len);

}

Matúš Harvan 6lowpan for TinyOS 2.0 20

Receiving a UDP packet

Receive
.receive()

lowpan_input()

layer3_input()

ipv6_input_...()

udp_input_...()

UDPClient
.receive()

802.15.4/AM 6lowpan 6lowpan/IPv6 IPv6 UDP Application

each network layer and protocol handled by a
separate function

Matúš Harvan 6lowpan for TinyOS 2.0 21

Sending a UDP packet

UDPClient
.send()

udp_output_...()

ipv6_output_...()

post sendTask()

AMSend.send()

UDP IPv6 6lowpan 802.15.4/AMApplication UDP

AMSend
.sendDone()UDPClient

.sendDone()

again separate functions

task for sending packets

queue of outgoing packets
Matúš Harvan 6lowpan for TinyOS 2.0 22

Sending – Why a task and queuing?

may have to determine destination’s link-layer
address (Neighbor Discovery)

before sending the packet
– need to know where to send the packet
before HC1-encoding the IPv6 header

fragmentation may be needed

receive frames while fragments are being sent

Matúš Harvan 6lowpan for TinyOS 2.0 23

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 24

Buffers – Design goals

accommodate for both
short unfragmented packet – up to 102 bytes
large fragmented packet – up to 1280 bytes

higher-layer (UDP) payload buffer provided by
the application

need to prepend headers

Matúš Harvan 6lowpan for TinyOS 2.0 25

Buffers – Design

all headers together
are certainly not
larger than an
unfragmented packet

use the same buffer
for headers as for the
unfragmented packet
payload

size header
6lowpan optional headers

5− 19 mesh addressing
2 broadcast

4− 5 fragmentation
layer 3 header

41 IPv6 (uncompressed)
3− 41 IPv6 (HC1-compressed)

layer 4 headers
8 UDP (uncompressed)

4− 9 UDP (HC UDP-compressed)
8 ICMP
24 TCP

Matúš Harvan 6lowpan for TinyOS 2.0 26

Buffers - representing a packet

lowpan pkt t
typedef struct _lowpan_pkt_t {

/* buffers */

uint8_t *app_data; /* buffer for application data */

uint16_t app_data_len; /* how much data is in the buffer */

uint8_t *app_data_begin; /* start of the data in the buffer */

uint8_t app_data_dealloc; /* shall IPC deallocate the app_data buffer? */

uint8_t header[LINK_DATA_MTU]; /* buffer for the header (tx)

* or unfragmented 802.15.4 frame (rx) */

uint16_t header_len; /* how much data is in the buffer */

uint8_t *header_begin; /* start of the data in the buffer */

/* fragmentation (tx) */

uint16_t dgram_tag;

uint16_t dgram_size;

uint8_t dgram_offset; /* offset where next fragment starts (tx) */

/* IP addresses */

ip6_addr_t ip_src_addr;

ip6_addr_t ip_dst_addr;

/* 802.15.4 addresses */

hw_addr_t hw_src_addr;

hw_addr_t hw_dst_addr;

uint8_t notify_num; /* num of UDPClient + 1

* 0 for no sendDone notification */

struct _lowpan_pkt_t *next;

} lowpan_pkt_t;

Matúš Harvan 6lowpan for TinyOS 2.0 28

Buffers – changing the owner

app data dealloc allows to change the
“owner” of the app data buffer

used when replying to an ICMP echo request to
prevent copying of data

might be useful for UDPClient as well

Matúš Harvan 6lowpan for TinyOS 2.0 29

Buffers - receiving a packet

one global buffer for received packet

unfragmented packets fit into header buffer

fragmented packets in app data buffer
(provided by fragment reassembly)

no concurrency – processing of the received
packet cannot be interrupted by receiving
another packet
(until control is returned back to TinyOS)

Matúš Harvan 6lowpan for TinyOS 2.0 30

Buffers - sending a packet

SendPktPool
pool of lowpan pkt t packets for sending
compile-time configurable size – allows to make
use of extra memory on the TelosB mote

outgoing packets queued, queue processed by
sendTask

Matúš Harvan 6lowpan for TinyOS 2.0 31

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 32

Fragmentation

dealt with in sendTask

Matúš Harvan 6lowpan for TinyOS 2.0 33

Fragment reassembly

reassembled into an app data buffer
pool of app data buffers – AppDataPool

compile-time configurable size
size determines how many packets can be
reassembled concurrently

when reassembly completed, app data buffer
moved into the global lowpan pkt t for
receiving

Matúš Harvan 6lowpan for TinyOS 2.0 34

Fragment reassembly

two options for keeping track of received
fragments

1 bitmap – 160 bits = 20 bytes would do
2 linked list

6lowpan draft requires treating overlapping
fragments differently if offset or length differ

need a linked list to determine if offset or
length differ or the fragment is just a duplicate

linked list items also managed by a pool

if full size of 802.15.4 frames is used, 15
fragments are sufficient for a 1280-byte packet

Matúš Harvan 6lowpan for TinyOS 2.0 35

Link-layer

TinyOS 2.0 does not have a proper 802.15.4
stack

TinyOS notion of networking: Active Messages
Active Message header same as 802.15.4 data
frame header

additional 1-byte AM Type field in the 802.15.4
payload

+-------------------+---------+------------------------------+--------------+

| 802.15.4 Header | AM type | data | 802.15.4 CRC |

+-------------------+---------+------------------------------+--------------+

solution: sending 6lowpan payload as Active
Message payload

Matúš Harvan 6lowpan for TinyOS 2.0 37

IPv6 Addresses

one global IPv6 address (prefix currently
hardcoded)

one link-local IPv6 address

interface identifier computed from Active
Message address (802.15.4 short address) of
the mote

the application cannot change the IPv6
addresses (for now)

Matúš Harvan 6lowpan for TinyOS 2.0 38

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 39

serial tun daemon – 6lowpan for Linux

allows a Linux PC to use a mote as an
802.15.4 interface

the mote runs the BaseStationCC2420 application
to forward frames between the USB and the radio
interface

6lowpan en- and decapsulation
the Linux kernel does not speak 6lowpan

tun interface
proper network interface, ifconfig-supported
packets further handled by the Linux kernel

Matúš Harvan 6lowpan for TinyOS 2.0 40

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 41

Missing features

proper 802.15.4 stack – tunneling as Active
Message payload

HC1 encoding – non-zero Traffic Class and
Flow Label

HC UDP encoding – compressed UDP port
numbers
fragmentation PC → mote not yet 100%
reliable

some fragments not received by the mote
workaround with sleeping before sending a
subsequent fragment

Matúš Harvan 6lowpan for TinyOS 2.0 42

Missing features

Neighbor Discovery
using link-layer broadcast instead
unclear which parts actually needed, under
discussion in 6lowpan and RSN groups

IPv6 extension header, IPv6 fragmentation

sending ICMP error message

Matúš Harvan 6lowpan for TinyOS 2.0 43

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 44

6lowpan demonstration

Matúš Harvan 6lowpan for TinyOS 2.0 45

6lowpan – Demonstration

ping – IPv6
unfragmented
fragmented

cli – telnet over IPv6/UDP
control the leds
control the sounder
request UDP data to be sent back

unfragmented
fragmented

Matúš Harvan 6lowpan for TinyOS 2.0 46

Outline
1 Introduction

TelosB and MicaZ Hardware Platforms
IEEE 802.15.4 (PHY and MAC layer)
TinyOS and nesC
6lowpan

2 Implementation
Buffers
Fragments
6lowpan for Linux
Missing Features

3 Demonstration
4 Conclusion

Evaluation
Matúš Harvan 6lowpan for TinyOS 2.0 47

Evaluation

21900 bytes of ROM, 2906 bytes of RAM

ping works

UDP works

fragmentation works

tested against Linux ping6 and nc6

robust – ping can run for several hours
the design allows to easily add

replying to Neighbor Solicitations
sending Neighbor Solicitations before
HC1-encoding or sending a packet
TCP protocol

Matúš Harvan 6lowpan for TinyOS 2.0 48

References

K. Römer and F. Mattern.

The Design Space of Wireless Sensor Networks
IEEE Wireless Communications 11(6), December 2004.

J. Polastre, R. Szewczyk and David Culler.

Telos: Enabling Ultra-Low Power Wireless Research
IEEE IPSN, April 2005.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer and D. Culler.

The nesC Language: A Holistic Approach to Networked Embedded Systems
ACM PLDI, June 2003.

G. Montenegro, N. Kushalnagar, J. Hui and D. Culler.

Transmission of IPv6 Packets over IEEE 802.14.4 Networks
Internet-Draft draft-ietf-6lowpan-format-13 (work in progress), April 2007.

Matúš Harvan 6lowpan for TinyOS 2.0 49

Questions?

Implementation: http://www.eecs.iu-bremen.
de/users/harvan/files/6lowpan.tar.gz

Matúš Harvan 6lowpan for TinyOS 2.0 50

http://www.eecs.iu-bremen.de/users/harvan/files/6lowpan.tar.gz
http://www.eecs.iu-bremen.de/users/harvan/files/6lowpan.tar.gz

Backup slides

Matúš Harvan 6lowpan for TinyOS 2.0 51

Applications

Environmental monitoring

Seismic detection

Disaster situation monitoring and recovery

Health and medical monitoring

Inventory tracking and logistics

Smart spaces (home/office scenarios)

Military surveillance

Matúš Harvan 6lowpan for TinyOS 2.0 52

Why connect WSNs to the Internet?

Internet Protocol (IP)
ubiquitous
de-facto standard
already deployed
plethora of applications available

Matúš Harvan 6lowpan for TinyOS 2.0 53

Design Goals

cheap
ideally less than 1 Euro

many
lots of devices, economies of scale

robust
unattended operation (no repair)

small
importance depends on the circumstances

low-power
difficult/impossible to replace batteries

Matúš Harvan 6lowpan for TinyOS 2.0 54

Design Goals

cheap
ideally less than 1 Euro

many
lots of devices, economies of scale

robust
unattended operation (no repair)

small
importance depends on the circumstances

low-power
difficult/impossible to replace batteries

Matúš Harvan 6lowpan for TinyOS 2.0 54

Design Goals

cheap
ideally less than 1 Euro

many
lots of devices, economies of scale

robust
unattended operation (no repair)

small
importance depends on the circumstances

low-power
difficult/impossible to replace batteries

Matúš Harvan 6lowpan for TinyOS 2.0 54

Design Goals

cheap
ideally less than 1 Euro

many
lots of devices, economies of scale

robust
unattended operation (no repair)

small
importance depends on the circumstances

low-power
difficult/impossible to replace batteries

Matúš Harvan 6lowpan for TinyOS 2.0 54

Design Goals

cheap
ideally less than 1 Euro

many
lots of devices, economies of scale

robust
unattended operation (no repair)

small
importance depends on the circumstances

low-power
difficult/impossible to replace batteries

Matúš Harvan 6lowpan for TinyOS 2.0 54

TinyOS – Functionality

hardware abstraction

access to sensors

access to actuators

scheduler (tasks, hardware interrupts)

timer

radio interface

Active Messages (networking)

storage (using flash memory on the motes)

. . .

Matúš Harvan 6lowpan for TinyOS 2.0 55

nesC – Components and Interfaces

a nesC application consists of components
modules – implement interfaces
configurations – connect modules together via
their interfaces (wiring)

components provide and use interfaces
commands – can be called by other modules
events – signaled by other modules

Matúš Harvan 6lowpan for TinyOS 2.0 56

nesC – Components and Interfaces

a nesC application consists of components
modules – implement interfaces
configurations – connect modules together via
their interfaces (wiring)

components provide and use interfaces
commands – can be called by other modules
events – signaled by other modules

Matúš Harvan 6lowpan for TinyOS 2.0 56

NesC — Concurrency — Tasks

Define a Task
task void task_name() { ... }

Post a Task
post task_name();

posting a task – the task is placed on an
internal task queue which is processed in FIFO
order

a task runs to completion before the next task
is run, i.e. tasks do not preempt each other

tasks can be preempted by hardware events

Matúš Harvan 6lowpan for TinyOS 2.0 58

	Introduction
	TelosB and MicaZ Hardware Platforms
	IEEE 802.15.4 (PHY and MAC layer)
	TinyOS and nesC
	6lowpan

	Implementation
	Buffers
	Fragments
	6lowpan for Linux
	Missing Features

	Demonstration
	Conclusion
	Evaluation

