SNMP Trace Analysis

Jürgen Schönwälder

向下 イヨト イヨト

IM 2007, Munich, 2007-05-23

Co-authors: A. Pras, M. Harvan, J. Schippers, R. van de Meent Support: EU IST-EMANICS Network of Excellence (#26854), SURFnet and various network operators

Outline

- Warmp-up quiz
- Why do we care?
- 2 Approach
 - Measurements
 - Tools (snmpdump)
 - Metrics
- Initial results
 - Trace characterization
 - Flow analysis
 - MIB object analysis

4 Outlook

Outline

- Warmp-up quiz
- Why do we care?
- 2 Approach
 - Measurements
 - Tools (snmpdump)
 - Metrics
- 3 Initial results
 - Trace characterization
 - Flow analysis
 - MIB object analysis

4 Outlook

回 と く ヨ と く ヨ と

三日 のへで

Question

What is the most widely used version of SNMP?

a) SNMPv1	c) SNMPv3
b) SNMPv2c	d) SNMPv4

□> < E> < E>

Question

What is the most widely used version of SNMP?

Answers		
	a) SNMPv1	c) SNMPv3
	b) SNMPv2c	d) SNMPv4

同 と く ヨ と く ヨ と

Question

What is a commonly used max-repetitions parameter value?

a) 1	c) 42
b) 2	d) 1000

同 と く ヨ と く ヨ と

Question

What is a commonly used max-repetitions parameter value?

Answers			
	a) 1	c) 42	
	b) 2	d) 1000	

Question

How many agents does an SNMP manager typically manage?

a) 2 agents	c) 288 agents
b) 42 agents	d) >288 agents

伺 ト イヨト イヨト

Question

How many agents does an SNMP manager typically manage?

Answers		
	a) 2 agents	c) 288 agents
	b) 42 agents	d) >288 agents

Question

What is the average size of an SNMP message?

a) 42 bytes	c) 767 bytes
b) 484 bytes	d) 1500 bytes

回 と く ヨ と く ヨ と

Question

What is the average size of an SNMP message?

Answers		
a) 42 bytes	c) 767 bytes	
	b) 484 bytes	d) 1500 bytes

伺 ト イヨト イヨト

We all know SNMP...

- The Simple Network Management Protocol (SNMP) is widely deployed to
 - monitor devices (collect statistics, event reports),
 - control devices (turning knobs), and
 - (to a lesser extent) configure devices
- SNMP supports "fancy" features to allow applications to do the right thing
 - discontinuity indicators
 - row creation modes
 - advisory locks
 - . . .
- SNMP technology is well documented and understood (if you care to study the right documents)

伺 ト イヨト イヨト

... but not how it is used in practice!

- What are typical SNMP usage patterns?
- Which table retrieval algorithms are popular?
- How to model the arrival process of SNMP messages?
- What is the size distribution of SNMP messages?
- Which features of SNMP are used/not used?
- Which MIB objects (MIB modules) are frequently used?
- Is trap-directed polling reality or a myth?
- Are the fully automated control loops?
- Are SNMP improvements relevant for deployments?
- . . .

- Researchers write papers how to improve SNMP or how other technologies (e.g., Web Services) compare to SNMP without having a justified model
- The IETF works on extensions (e.g., session-based security in ISMS) without knowing network management traffic models (and in the context of ISMS to what extend a session-based approach to security is viable)
- The IETF requires features during MIB design/review without knowing whether they are used in practice
- Implementors always want to know which features are worth to spend development time on

- Researchers write papers how to improve SNMP or how other technologies (e.g., Web Services) compare to SNMP without having a justified model
- The IETF works on extensions (e.g., session-based security in ISMS) without knowing network management traffic models (and in the context of ISMS to what extend a session-based approach to security is viable)
- The IETF requires features during MIB design/review without knowing whether they are used in practice
- Implementors always want to know which features are worth to spend development time on

- Researchers write papers how to improve SNMP or how other technologies (e.g., Web Services) compare to SNMP without having a justified model
- The IETF works on extensions (e.g., session-based security in ISMS) without knowing network management traffic models (and in the context of ISMS to what extend a session-based approach to security is viable)
- The IETF requires features during MIB design/review without knowing whether they are used in practice
- Implementors always want to know which features are worth to spend development time on

- Researchers write papers how to improve SNMP or how other technologies (e.g., Web Services) compare to SNMP without having a justified model
- The IETF works on extensions (e.g., session-based security in ISMS) without knowing network management traffic models (and in the context of ISMS to what extend a session-based approach to security is viable)
- The IETF requires features during MIB design/review without knowing whether they are used in practice
- Implementors always want to know which features are worth to spend development time on

Outline

Motivation

- Warmp-up quiz
- Why do we care?

2 Approach

- Measurements
- Tools (snmpdump)
- Metrics

3 Initial results

- Trace characterization
- Flow analysis
- MIB object analysis

4 Outlook

Measurements

- Goal: Capture SNMP traffic from operational networks to model how network management protocols are used in practice
- Measurement process:
 - Capture raw SNMP traces in pcap capture files
 Convert raw traces into an intermediate format
 Filter traces to suppress / anonymize sensitive data
 Store filtered / anonymized traces in a repository
 Run analysis scripts on filtered / anonymized traces
- Intermediate formats [1]:
 - xml sexy and comprehensive but expensive
 - csv classic and efficient but restricted

Traces contain sensitive data

- Dealing with sensitive data:
 - In some cases, the operator chooses to provide raw traces to researchers under an NDA
 - In some cases, the operator chooses to provide filtered / anonymized traces to researchers under an NDA
 - In some cases, the operator chooses to keep traces under local control and commits to run analysis scripts on them and to provide the results
- Our experience / recommendation:
 - Tools should support many different approaches
 - Trust between researchers and operators is key
 - Building trust relationships is a good investment

Tool support (snmpdump)

- snmpdump reads as input pcap or xml or csv files and produces output in xml or csv format
- snmpdump takes care of datagram reassembly (libnids)
- snmpdump can split a trace into flows (see below)

向下 イヨト イヨト ヨ

Filtering, conversion, anonymization

- The filter module is responsible to remove information that should not be made available (filter-out principle)
 - Filtering must happen as early as possible
 - A filter is a regex matched against field names
 - Typically used to remove community strings
- The conversion module implements trap conversion as specified in RFC 3584 [2] section 3.1
 - Single trap format simplifies scripts
 - Filtering has to be re-applied after conversion
 - Conversion is optional
- The anonymization module scrambles data in order to raise the effort needed to obtain sensitive information about the internals of an operational network (see [3])

Precise and effective to compute metrics needed...

• Layered model of metrics to abstract from the concrete details of the management protocols used

<回> < 回> < 回> < 回>

Outline

Motivation

- Warmp-up quiz
- Why do we care?
- 2 Approach
 - Measurements
 - Tools (snmpdump)
 - Metrics

Initial results

- Trace characterization
- Flow analysis
- MIB object analysis

4 Outlook

Trace collection

trace	description	start	hours
l01t02	national research network	2005-07-26	162.98
l01t05	national research network	2006-07-10	336.00
l02t01	university network	2006-04-21	294.62
103t02	faculty network	2006-04-27	159.21
l04t01	server-hosting provider	2006-04-14	4.00
l05t01	regional network provider	2006-04-19	580.60
l06t01	national research network	2006-05-14	222.08
l12t01	point of presence	2006-07-10	208.02

- Additional traces are being collected within EMANICS
- More traces are always welcome!!

trace	size [MB]	messages	SNMPv1	SNMPv2	SNMPv3
l01t02	6369	51772136	100.0%	-	-
l01t05	14043	40072529	-	100.0%	0.0%
l02t01	77789	258010521	5.5%	94.5%	-
103t02	130858	871361365	95.0%	5.0%	-
l04t01	10	15099	35.7%	64.3%	-
l05t01	2898	25298667	100.0%	-	-
l06t01	24683	89277889	57.4%	42.6%	-
l12t01	312	2619884	32.3%	67.7%	-

- One trace included a few very sporadic SNMPv3 packets (someone testing SNMPv3?)
- Organization *I01* uses in one location 100% SNMPv1 and in a second location 100% SNMPv2c

Protocol operations

trace	Get	Next	Bulk	Set	Trap	Inform	Resp
l01t02	0.0	50.0	-	0.0	-	-	50.0
l01t05	0.0	-	50.0	-	-	-	50.0
l02t01	0.1	2.4	47.1	0.0	0.7	-	49.6
103t02	0.3	49.8	-	0.0	0.0	-	49.9
l04t01	32.8	3.8	22.9	-	-	-	40.5
l05t01	50.0	0.0	-	-	0.0	-	50.0
l06t01	12.1	31.4	6.5	-	0.0	0.0	50.0
l12t01	1.0	49.0	-	-	0.0	-	49.9

- In *l01t02*, all Set operations were trying to modify sysLocation with a value of type Integer32
- In *I02t01* and *I03t02*, Set operations were used to trigger download of config information
- In *l04t01*, there were significantly more requests than responses (system maintenance)

Protocol operation parameters

trace	Get	Next	Bulk	max-reps	non-reps
l01t02	37.5%	99.3%	-	-	-
l01t05	100.0%	-	100.0%	10/50	0
l02t01	56.3%	99.9%	100.0%	1/10/20/25	0
103t02	1.6%	99.9%	-	-	-
l04t01	100.0%	100.0%	100.0%	1000	0
l05t01	99.9%	95.6%	-	-	-
106t01	8.7%	2.6%	0.0%	12	0
l12t01	100.0%	99.9%	-	-	-

- Except for *l06t01*, single varbind GetNext and GetBulk operations dominate
- In *106t01*, 86.5% of the GetBulk operations contain two varbinds and the remaining 13.5% contain eight varbinds

Definition

An SNMP message flow is defined as all messages between a source and destination address pair which belong to a command generator (CG) / command responder (CR) relationship or a notification originator (NO) / notification receiver (NR) relationship.

- The above definition deliberately does not consider port numbers (they change too frequently)
- Multi-homed managers will appear with multiple flows

trace	cg/cr flows	no/nr flows	cg	cr	no	nr
101t02	203	-	3	178	-	-
l01t05	8	8 -		8	-	-
l02t01	258	197	5	240	197	1
103t02	42	20	25	20	17	2
l04t01	34	-	3	34	-	-
l05t01	117	2	9	99	2	2
106t01	288	125	3	260	125	2
l12t01	30	6	5	26	6	1

• Traffic is not evenly distributed across the flows

• Most traces have very few dominating flows

Flow size distribution

- In some traces, the number of message and bytes per flow is closely correlated
- In other traces, this is not the case (essentially due to GetBulk usage)

(4月) (日) (日) 日

Flow topology 104t01

- Typical simple monitoring topology
- Some flows carry more traffic than other flows
- Gray-level indicates intensity (but difficult to see)

Flow topology *I01t02*

- Slightly more complex monitoring topology
- Some devices are interacting with multiple management interfaces

Flow topology *I03t02*

- Large number of managers talking to a single agent
- Analysis revealed that the device is a printer queried from a PC which is getting dynamically changing IP addresses

Flow topology *I06t01*

- Significant number of NO/NR flows
- Single pretty dark dot indicates that a single flow is dominating

周▶ ▲ 国▶ ▲ 国

Flow topology *l06t01* (treemap)

• Treemap plots nicely visualizes contribution of the flows

同 🖌 🖉 🖿 🖌 🖻 🕨 🚊

= 200

trace	int32	uint32	uint64	oct	oid	ip	null	exc
l01t02	48.1	3.2	-	39.6	0.3	8.6	0.2	-
l01t05	13.4	21.0	52.7	12.9	0.0	0.0	-	0.0
l02t01	22.4	45.1	18.4	11.7	2.4	0.0	0.0	0.0
103t02	2.5	95.0	-	2.4	0.1	0.0	0.0	-
l04t01	0.7	0.5	98.8	-	-	-	-	-
l05t01	2.6	80.1	-	17.0	0.0	0.0	-	-
l06t01	37.9	23.8	7.5	30.7	0.0	0.0	0.0	0.0
l12t01	48.3	51.5	0.0	0.1	0.1	0.0	0.0	-

- Strong dominance of integral types; some traces contain in addition a significant portion of octet string data
- Some read-only string objects (e.g., ifDescr) are retrieved over and over again

trace	IF	BR	BGP	HR	ENT	CIS	CP
l01t02	40.1	-	17.6	-	10.3	30.4	-
l01t05	99.7	-	-	0.0	-	-	-
l02t01	93.5	5.5	0.0	-	0.1	0.0	-
103t02	33.3	65.1	0.0	0.0	0.0	0.1	-
l04t01	99.7	-	-	-	-	-	-
l05t01	80.1	-	-	-	-	-	17.0
l06t01	91.3	0.0	0.0	-	0.0	2.0	-
l12t01	50.4	0.0	-	47.7	-	-	-

- In trace *I06t01*, 32-bit counters dominate and the discontinuity indicator is ignored
- In trace *l02t01*, *all* columns of the ifTable and the ifXTable are retrieved regularly

- In trace *l02t01*, about 52.1% of the notifications are fan failure notifications that are repeated periodically. Some 42.2% are interface up/down notifications while the remaining notifications are HP and Avaya specific
- In trace *103t02*, we found that all notifications were reporting printer problems
- Trace *105t01* contains only Cisco notifications related to TCP session teardowns and configuration changes
- Trace *106t01* has 26.1% BGP and 8.1% PIM routing related notifications. Some 20.0% are sensor threshold crossing notifications while 13.2% are Cisco notifications related to TCP session teardowns
- Trace *l12t01* contains 68.5% authentication failure, 14.8% cold start and 16.7% shut down notifications

● > < 目 < 目 > < 目 > < 目 > < 目 > < 目 > < □ > < □ > < □ > < □ □ < □ > < □ □ < □ > < □ □ < □ > < □ □ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In trace *l02t01*, about 52.1% of the notifications are fan failure notifications that are repeated periodically. Some 42.2% are interface up/down notifications while the remaining notifications are HP and Avaya specific
- In trace *103t02*, we found that all notifications were reporting printer problems
- Trace *105t01* contains only Cisco notifications related to TCP session teardowns and configuration changes
- Trace *106t01* has 26.1% BGP and 8.1% PIM routing related notifications. Some 20.0% are sensor threshold crossing notifications while 13.2% are Cisco notifications related to TCP session teardowns
- Trace *l12t01* contains 68.5% authentication failure, 14.8% cold start and 16.7% shut down notifications

→ < E > < E > E = <0 < 0</p>

- In trace *l02t01*, about 52.1% of the notifications are fan failure notifications that are repeated periodically. Some 42.2% are interface up/down notifications while the remaining notifications are HP and Avaya specific
- In trace *103t02*, we found that all notifications were reporting printer problems
- Trace *105t01* contains only Cisco notifications related to TCP session teardowns and configuration changes
- Trace *106t01* has 26.1% BGP and 8.1% PIM routing related notifications. Some 20.0% are sensor threshold crossing notifications while 13.2% are Cisco notifications related to TCP session teardowns
- Trace *l12t01* contains 68.5% authentication failure, 14.8% cold start and 16.7% shut down notifications

→ < E > < E > E = <000</p>

- In trace *l02t01*, about 52.1% of the notifications are fan failure notifications that are repeated periodically. Some 42.2% are interface up/down notifications while the remaining notifications are HP and Avaya specific
- In trace *103t02*, we found that all notifications were reporting printer problems
- Trace *105t01* contains only Cisco notifications related to TCP session teardowns and configuration changes
- Trace *106t01* has 26.1% BGP and 8.1% PIM routing related notifications. Some 20.0% are sensor threshold crossing notifications while 13.2% are Cisco notifications related to TCP session teardowns
- Trace *l12t01* contains 68.5% authentication failure, 14.8% cold start and 16.7% shut down notifications

< E ▶ < E ▶ E = りへの

- In trace *l02t01*, about 52.1% of the notifications are fan failure notifications that are repeated periodically. Some 42.2% are interface up/down notifications while the remaining notifications are HP and Avaya specific
- In trace *103t02*, we found that all notifications were reporting printer problems
- Trace *105t01* contains only Cisco notifications related to TCP session teardowns and configuration changes
- Trace *106t01* has 26.1% BGP and 8.1% PIM routing related notifications. Some 20.0% are sensor threshold crossing notifications while 13.2% are Cisco notifications related to TCP session teardowns
- Trace *l12t01* contains 68.5% authentication failure, 14.8% cold start and 16.7% shut down notifications

토 · · 토 · 토

= 200

Outline

Motivation

- Warmp-up quiz
- Why do we care?
- 2 Approach
 - Measurements
 - Tools (snmpdump)
 - Metrics

3 Initial results

- Trace characterization
- Flow analysis
- MIB object analysis

4 Outlook

This is just the beginning...

- Started with SNMP because
 - it is widely deployed and we understand it well
 - it is reasonably complex to start with
- Work is underway
 - to analyze periodic / aperiodic behaviour
 - to investigate walks / table retrieval algorithms
 - to identify semantic management transactions
- Plans exist to cover additional protocols
 - SYSLOG, CLI, RADIUS, NETFLOW, ...
- More traces will be added
 - to cover more network types (campus, enterprise, ISP)
 - to increase statistical evidence in our results

... of a longer journey.

Long term goals

- Develop models of management plane interactions
- Abstracting away from protocol specifics
- Definition of management plane metrics (IPPM like)
- Simulation models to evaluate approaches / scenarios
- Advanced visualization techniques to explore data sets
- Understand what scalability actually means

The end

Questions?

... of a longer journey.

Long term goals

- Develop models of management plane interactions
- Abstracting away from protocol specifics
- Definition of management plane metrics (IPPM like)
- Simulation models to evaluate approaches / scenarios
- Advanced visualization techniques to explore data sets
- Understand what scalability actually means

The end Questions?

References

J. Schönwälder.

SNMP Traffic Measurements.

 $\label{eq:linear} Internet \mbox{ Draft (work in progress) < draft-schoenw-nmrg-snmp-measure-01.txt>, International University Bremen, February 2006.$

R. Frye, D. Levi, S. Routhier, and B. Wijnen.

Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework.

RFC 3584, Vibrant Solutions, Nortel Networks, Wind River Systems, Lucent Technologies, August 2003.

M. Harvan and J. Schönwälder.

Prefix- and Lexicographical-order-preserving IP Address Anonymization. In 10th IEEE/IFIP Network Operations and Management Symposium, pages 519–526, April 2006.

J. Schönwälder.

Characterization of SNMP MIB Modules.

In Proc. 9th IFIP/IEEE International Symposium on Integrated Network Management, pages 615–628. IEEE, May 2005.

J. Schönwälder, A. Pras, M. Harvan, J. Schippers, and R. van de Meent. SNMP Traffic Analysis: Approaches, Tools, and First Results.

In Proc. 10th IFIP/IEEE International Symposium on Integrated Network Management, May 2007.

イロト イヨト イヨト イヨト