
NETCONF Interoperability Testing

Ha Manh Tran Iyad Tumar Jürgen Schönwälder

Jacobs University Bremen

July 1, 2009

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 1



NETCONF Interoperability Testing

Describe a NETCONF interoperability testing plan that is
used to test whether NETCONF protocol implementations
meet the NETCONF protocol specification in RFC 4741.

The test plan particularly focuses on testing the
correctness of NETCONF messages and operations (not
to measure the performance of NETCONF
implementations).

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 2



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 3



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 4



NETCONF Overview

The NETCONF protocol provides mechanisms to install,
manipulate, and delete the configuration of network
devices.
It uses an Extensible Markup Language based data
encoding on top of a simple Remote Procedure Call layer.

2

Information
Network Status and

Performance Information

Service Management
Systems

Policy Management
Systems

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

Configuration
Backup

Repository

Network Topology

(a) Network is the Record

Configuration
Database

Translator
Configuration Data

Network Topology
Information

Network Status and
Performance Information

Service Management
Systems

Policy Management
Systems

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

De
vi

ce
Co

nf
ig

ur
at

io
n

Network−Wide

(b) Generate Everything

Fig. 1. The “Network is the Record” vs. the “Generate Everything” approaches to configuration management

and versioning issues. Several operators reported during the
IAB workshop that they find it time consuming to maintain
programs or scripts that interface with different versions of a
command line interface.

Figure 2 shows a NETCONF deployment scenario. It as-
sumes that a network-wide configuration or policy systems
uses the NETCONF protocol to enforce configuration changes
on NETCONF enabled devices. In such a deployment, a policy
driven network manager acting as a policy decision point
includes a NETCONF client. The managed devices includes
a NETCONF server acting as a policy enforcement point. Of
course, the setup shown in Figure 2 requires that a policy
manager can translate higher-level policies into device configu-
rations; NETCONF only provides the protocol to communicate
complete configurations and configuration changes to devices.

NETCONF Device

Instrumentation

NETCONF Device

Instrumentation

NETCONF Device

Instrumentation

Server Server Server

Client

Applications

Client

CLI

NETCONF CLI
NETCONF Policy Manager

Fig. 2. NETCONF deployment scenario including a policy manager and a
command line interface (CLI).

The right part of Figure 2 shows a CLI which talks
NETCONF to a server in order to implement the functionality
provided through the CLI. NETCONF is designed to be
powerful enough to drive CLIs. Cost savings on the device
vendor side can only be achieved if there is a single method
to effect configuration changes which can be shared across
programmatic and human operator interfaces. This implies that
the scope of the NETCONF protocol is actually broader than
just device configuration.

III. NETWORK CONFIGURATION PROTOCOL (NETCONF)
The NETCONF protocol [1] has a simple layered architec-

ture as shown in Figure 3. The NETCONF core is a simple
remote procedure call (RPC) layer running over secure trans-
ports. The Secure Shell (SSH) [4] is the mandatory transport
that all clients and servers are required to implement as a
means of promoting interoperability. Other transport mappings
are defined as well. The operations layer residing on top of the
RPC layer provides specific operations to manipulate configu-
ration state. The configuration data itself forms the content
layer residing above the operations layer. The NETCONF
specification mainly deals with generic operations to retrieve
and modify configuration state. An additional document [5]
defines operations to subscribe to notification channels and to
receive notifications. It is expected that additional operations
will be introduced in the future for more specific management
purposes.

Example

Remote Procedure Call

Transport Protocol

Operations

Content

SSH, SOAP, BEEP, TLS, ...

<rpc>, <rpc−reply>

<get−config>, <edit−config>

Configuration data

Layer

Fig. 3. NETCONF protocol layers

NETCONF assumes that the configuration state of a device
can be represented as a structured document that can be
retrieved and manipulated (document-oriented approach). In
order to deal with large configurations, the protocol supports
filtering mechanisms that allow clients to retrieve only a subset
of the configuration.

NETCONF supports multiple configuration datastores. A
configuration datastore contains all information needed to
get a device from its initial default state into the desired
configuration state. The running datastore is always present
and describes the currently active configuration. In addition,
NETCONF supports the notion of a startup configuration

NETCONF protocol layers

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 5



NETCONF Overview

NETCONF protocol operations (arguments in brackets are optional)

NETCONF Interoperability Testing 3

2

Information
Network Status and

Performance Information

Service Management
Systems

Policy Management
Systems

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

Configuration
Backup

Repository

Network Topology

(a) Network is the Record

Configuration
Database

Translator
Configuration Data

Network Topology
Information

Network Status and
Performance Information

Service Management
Systems

Policy Management
Systems

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

D
e
v
ic

e
C

o
n

fi
g

u
ra

ti
o

n

Network!Wide

(b) Generate Everything

Fig. 1. The “Network is the Record” vs. the “Generate Everything” approaches to configuration management

and versioning issues. Several operators reported during the
IAB workshop that they find it time consuming to maintain
programs or scripts that interface with different versions of a
command line interface.

Figure 2 shows a NETCONF deployment scenario. It as-
sumes that a network-wide configuration or policy systems
uses the NETCONF protocol to enforce configuration changes
on NETCONF enabled devices. In such a deployment, a policy
driven network manager acting as a policy decision point
includes a NETCONF client. The managed devices includes
a NETCONF server acting as a policy enforcement point. Of
course, the setup shown in Figure 2 requires that a policy
manager can translate higher-level policies into device configu-
rations; NETCONF only provides the protocol to communicate
complete configurations and configuration changes to devices.

NETCONF Device

Instrumentation

NETCONF Device

Instrumentation

NETCONF Device

Instrumentation

Server Server Server

Client

Applications

Client

CLI

NETCONF CLI

NETCONF Policy Manager

Fig. 2. NETCONF deployment scenario including a policy manager and a
command line interface (CLI).

The right part of Figure 2 shows a CLI which talks
NETCONF to a server in order to implement the functionality
provided through the CLI. NETCONF is designed to be
powerful enough to drive CLIs. Cost savings on the device
vendor side can only be achieved if there is a single method
to effect configuration changes which can be shared across
programmatic and human operator interfaces. This implies that
the scope of the NETCONF protocol is actually broader than
just device configuration.

III. NETWORK CONFIGURATION PROTOCOL (NETCONF)
The NETCONF protocol [1] has a simple layered architec-

ture as shown in Figure 3. The NETCONF core is a simple
remote procedure call (RPC) layer running over secure trans-
ports. The Secure Shell (SSH) [4] is the mandatory transport
that all clients and servers are required to implement as a
means of promoting interoperability. Other transport mappings
are defined as well. The operations layer residing on top of the
RPC layer provides specific operations to manipulate configu-
ration state. The configuration data itself forms the content
layer residing above the operations layer. The NETCONF
specification mainly deals with generic operations to retrieve
and modify configuration state. An additional document [5]
defines operations to subscribe to notification channels and to
receive notifications. It is expected that additional operations
will be introduced in the future for more specific management
purposes.

Example

Remote Procedure Call

Transport Protocol

Operations

Content

SSH, SOAP, BEEP, TLS, ...

<rpc>, <rpc!reply>

<get!config>, <edit!config>

Configuration data

Layer

Fig. 3. NETCONF protocol layers

NETCONF assumes that the configuration state of a device
can be represented as a structured document that can be
retrieved and manipulated (document-oriented approach). In
order to deal with large configurations, the protocol supports
filtering mechanisms that allow clients to retrieve only a subset
of the configuration.

NETCONF supports multiple configuration datastores. A
configuration datastore contains all information needed to
get a device from its initial default state into the desired
configuration state. The running datastore is always present
and describes the currently active configuration. In addition,
NETCONF supports the notion of a startup configuration

Fig. 1. NETCONF protocol layers [1].

The test-option and the error-option parameters control the validation and the
handling of errors. The copy-config operation creates or replaces an entire con-
figuration datastore with the contents of another complete configuration data-
store and the delete-config operation deletes a configuration datastore (the
running configuration datastore cannot be deleted).

The lock and unlock operations do coarse grain locking of a complete data-
store and locks are intended to be short lived. More fine grained locking mech-
anisms are currently being defined in the IETF [4]. The get operation can be
used to retrieve the running configuration and the current operational state of
a device.

Table 1. NETCONF protocol operations (arguments in brackets are optional) [4]

Operation Arguments

get-config source [filter]
edit-config target [default-operation]

[test-option] [error-option] config
copy-config target source
delete-config target
lock target
unlock target
get [filter]
close-session
kill-session session-id
discard-changes
validate source
commit [confirmed confirm-timeout]
create-subscription [stream] [filter] [start] [stop]

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 6



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 7



Systems Under Test

Cisco 1802 integrated services routers.

Juniper J6300 Routers.

Tail-f ConfD software for configuration management.

EnSuite software for configuration management.

Systems Under Test

NETCONF Interoperability Testing 5

Table 2. Systems under test

System Platform SSH Support

Juniper JUNOS ver. 9.0 ver. 1.5/2.0

Tail-f ConfD ver. 2.5.2 ver. 2.0

Cisco IOS ver. 12.4 ver. 2.0

EnSuite YencaP ver. 2.1.11 ver. 2.0

pability. The Cisco, Juniper and EnSuite systems support fewer capabilities
and apparently the Cisco implementation favours a distinct startup datastore
while the Juniper implementation favours a candidate datastore with commit
and rollback support. The EnSuite implementation supports both startup and
candidate datastores. Note that some implementations can be configured to
support additional capabilities, but we used the more standard default settings
in our tests. In addition to the capabilities listed in Table 3, each system an-
nounces several proprietary capabilities.

Table 3. NETCONF capabilities supported by the systems under test

Capability Juniper Tail-f Cisco EnSuite

:base
√ √ √ √

:writable-running
√ √ √

:candidate
√ √ √

:confirmed-commit
√ √

:rollback-on-error
√

:validate
√ √

:startup
√ √

:url
√ √ √ √

:xpath
√ √

The Tail-f and Juniper implementations use an event driven parser. They do
not wait for the framing character sequence to respond to a request. The Cisco
and EnSuite systems do not seem to have an event driven parser or at least they
do not start processing requests until the framing character sequence has been
received.

The Juniper implementation is very lenient. For example, it continues pro-
cessing requests even if the client does not send a hello message or the client
does not provide suitable XML namespace and message-id attributes. The Ju-
niper implementation supports a large number of vendor-specific operations. In
addition, it renders the returned XML content in a tree-structure that is rela-
tively easy to read and it generates XML comments in cases of fatal errors before
closing the connection. As a consequence, the Juniper implementation is very
easy to use interactively for people who like to learn how things work without
using tools other than a scratch pad and a cut and paste device. The EnSuite im-

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 8



Systems Under Test

NETCONF capabilities supported by the systems under test

NETCONF Interoperability Testing 5

Table 2. Systems under test

System Platform SSH Support

Juniper JUNOS ver. 9.0 ver. 1.5/2.0

Tail-f ConfD ver. 2.5.2 ver. 2.0

Cisco IOS ver. 12.4 ver. 2.0

EnSuite YencaP ver. 2.1.11 ver. 2.0

pability. The Cisco, Juniper and EnSuite systems support fewer capabilities
and apparently the Cisco implementation favours a distinct startup datastore
while the Juniper implementation favours a candidate datastore with commit
and rollback support. The EnSuite implementation supports both startup and
candidate datastores. Note that some implementations can be configured to
support additional capabilities, but we used the more standard default settings
in our tests. In addition to the capabilities listed in Table 3, each system an-
nounces several proprietary capabilities.

Table 3. NETCONF capabilities supported by the systems under test

Capability Juniper Tail-f Cisco EnSuite

:base
√ √ √ √

:writable-running
√ √ √

:candidate
√ √ √

:confirmed-commit
√ √

:rollback-on-error
√

:validate
√ √

:startup
√ √

:url
√ √ √ √

:xpath
√ √

The Tail-f and Juniper implementations use an event driven parser. They do
not wait for the framing character sequence to respond to a request. The Cisco
and EnSuite systems do not seem to have an event driven parser or at least they
do not start processing requests until the framing character sequence has been
received.

The Juniper implementation is very lenient. For example, it continues pro-
cessing requests even if the client does not send a hello message or the client
does not provide suitable XML namespace and message-id attributes. The Ju-
niper implementation supports a large number of vendor-specific operations. In
addition, it renders the returned XML content in a tree-structure that is rela-
tively easy to read and it generates XML comments in cases of fatal errors before
closing the connection. As a consequence, the Juniper implementation is very
easy to use interactively for people who like to learn how things work without
using tools other than a scratch pad and a cut and paste device. The EnSuite im-

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 9



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 10



Test Plan

We divided our test plan into five test suites.

Test suites and current number of test cases

NETCONF Interoperability Testing 7

Table 4. Test suites and current number of test cases

Test Suite No. Test Cases

general 19

get 11

get-config 16

edit-config 15

vacm 26

an error. The kill-session test case contains a pre-configuration that prepares
another running session before terminating it, while the validate test case con-
tains a post-configuration that discards a change after validating it. This test
suite also checks the format of requests and responses. Few test cases verify
whether the responses contain the compulsory attributes and the attribute’s
value matches the value contained in the requests.

The next two test suites are the get and get-config suites. These suites
aim to test the filter mechanism of the get and get-config operations. While
get operates on the running configuration datastore and the device’s state data,
get-config operates on different sources of the configuration data such as the
running and candidate datastores (depending on the support of capabilities),
resulting in additional test cases for the get-config suite. Test cases verify
several types of subtree filters, e.g., a test case checks whether the system un-
der test returns the entire content of the running configuration data plus the
operational state when no filter is used, or another test case checks whether the
system under test returns nothing when an empty filter is used.

The edit-config suite involves tests modifying the configuration data in the
datastore. This suite includes test cases for the delete-config, copy-config,
and edit-config operations. The edit-config operation test cases support the
create, replace, merge and delete operation attributes. Several test cases in
this suite are data model specific due to the lack of a common data model, thus
we need to implement several tests in different ways. This extra work can be
reduced if implementers volunteer to support a common data model.

The last test suite is the vacm suite verifying the NETCONF protocol oper-
ations against the VACM data model [11]. This data model is a YANG version
of the SNMP-VIEW-BASED-ACM-MIB (View-based Access Control Model for the
Simple Network Management Protocol [12]). YANG [13] is a data modelling
language for NETCONF. Test cases in this suite are generated from this data
model focusing on the group, access, and view lists.

5 Test Tool (NIT)

We have implemented a tool called NIT (NETCONF Interoperability Testing
tool) to automatically execute the test suites against a system under test. Our
NIT tool basically performs the following operations:

1. connecting to a system under test using the SSH

A test suite is a collection of test cases that are intended
to be used to test and verify whether the systems under
test meet the NETCONF protocol specification contained
in RFC 4741 and RFC 4742.

The total number of test cases is 87.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 11



Test Plan

Each test case contains three parts:

Pre-configuration.
Main test.
Post-configuration.

Organization of test cases into test suites is not directly
following the vertical layering model.

To reduce the overhead of the pre-configuration and
post-configuration parts during the execution of the test
suite on the systems under test.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 12



Test Suites

1 general: It includes test cases for individual operations
such as lock, unlock, close-session, kill-session,
discard-changes, validate, and commit.

2 get: This suite aims to test the filter mechanism of the
get operations.

3 get-config: This suite aims to test the filter
mechanism of the get-config operations.

4 edit-config: Involves tests modifying the configuration
data in the datastore.

5 vacm suite verifying the NETCONF protocol operations
against the VACM data model.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 13



Test Suites

The edit-config operation test cases support the
create, replace, merge and delete operation
attributes.

This suite includes test cases for:

delete-config operations.
copy-config operations.
edit-config operations.

Several test cases in this suite are data model specific due
to the lack of a common data model, thus we need to
implement several tests in different ways.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 14



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 15



Test Tool (NIT)

We have implemented a tool called NIT (NETCONF
Interoperability Testing tool) to automatically execute the
test suites against a system under test.

NIT tool basically performs the following operations:
1 connecting to a system under test using the SSH.
2 verifying the initial hello message.
3 executing test cases by:

sending a test request and receiving a response.
verifying both the request and the response following
the criteria defined by RFC 4741.

4 reporting the failure or the success of each test.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 16



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 17



Preliminary Observations

Test result summary organized by the systems under test

NETCONF Interoperability Testing 9

misbehavior of systems under test. Secondly, while the test cases are believed to
comply with RFC 4741, the test scripts, i.e., the piece of code that implements
test cases, depends on the specification and configuration of components of the
tested systems to produce the requests and to verify the responses. Finally, the
framework requires some extra work for complicated test cases; e.g., testing the
lock operation requires an extra session to lock the database.

6 Preliminary Observations

We have used the NIT tool to test the systems described in Section 3. Since the
result of the tests are specific to the different NETCONF implementations, we
present the results by referring to system X and we leave out the mapping of X
to the systems described in Section 3. Note that we did manually re-check the
failed test cases in order to erase bugs in the test scripts. Despite these efforts,
several test cases reflect our interpretation of RFC 4741 and there might not be
full agreement with our interpretation and thus the numeric results presented
below should be taken with a grain of salt.

Table 5. Test result summary organized by the systems under test

System Success Failure Irrelevant

A 47.2% 14.9% 37.9%

B 82.8% 9.2% 8.0%

C 17.3% 10.3% 72.4%

D 17.3% 21.8% 60.9%

Table 5 presents the result of the NIT tool for the systems under test. The
“success” and “failure” columns indicate the percentage of passed and failed
test cases respectively, while the “irrelevant” column indicates the percentage
of test cases that cannot be applied to a specific system due to either system
configuration or implementation problems (e.g., the vacm data model is not
implemented).

We learned that the systems A and B comply reasonably well with the RFCs.
The system A fails 14.9% of the test cases and most of them are related to the
basic format of request and response messages or the filter mechanism of the get
operation. The system B performs better with very few failed test cases and most
of them are concerned with the validation of XML elements in request messages.
The two systems A and B have very few problems with the filter mechanism
of the get-config operation or the usage of the edit-config operation for
creating, modifying and deleting configuration elements. The systems C and D
perform poorer with 72.4% and 60.9% irrelevant test cases and 10.3% and 21.8%
failed test cases, respectively. The failed test cases are related to the format of
requests and responses or the filter mechanism of the get operation.

Success column: Indicates the percentage of passed test
cases.

Failure column: Indicates the percentage of failed test
cases.

Irrelevant column: Indicates the percentage of test cases
that cannot be applied to a specific system due to either
system configuration or implementation issues.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 18



Preliminary Observations

NETCONF Interoperability Testing 9

misbehavior of systems under test. Secondly, while the test cases are believed to
comply with RFC 4741, the test scripts, i.e., the piece of code that implements
test cases, depends on the specification and configuration of components of the
tested systems to produce the requests and to verify the responses. Finally, the
framework requires some extra work for complicated test cases; e.g., testing the
lock operation requires an extra session to lock the database.

6 Preliminary Observations

We have used the NIT tool to test the systems described in Section 3. Since the
result of the tests are specific to the different NETCONF implementations, we
present the results by referring to system X and we leave out the mapping of X
to the systems described in Section 3. Note that we did manually re-check the
failed test cases in order to erase bugs in the test scripts. Despite these efforts,
several test cases reflect our interpretation of RFC 4741 and there might not be
full agreement with our interpretation and thus the numeric results presented
below should be taken with a grain of salt.

Table 5. Test result summary organized by the systems under test

System Success Failure Irrelevant

A 47.2% 14.9% 37.9%

B 82.8% 9.2% 8.0%

C 17.3% 10.3% 72.4%

D 17.3% 21.8% 60.9%

Table 5 presents the result of the NIT tool for the systems under test. The
“success” and “failure” columns indicate the percentage of passed and failed
test cases respectively, while the “irrelevant” column indicates the percentage
of test cases that cannot be applied to a specific system due to either system
configuration or implementation problems (e.g., the vacm data model is not
implemented).

We learned that the systems A and B comply reasonably well with the RFCs.
The system A fails 14.9% of the test cases and most of them are related to the
basic format of request and response messages or the filter mechanism of the get
operation. The system B performs better with very few failed test cases and most
of them are concerned with the validation of XML elements in request messages.
The two systems A and B have very few problems with the filter mechanism
of the get-config operation or the usage of the edit-config operation for
creating, modifying and deleting configuration elements. The systems C and D
perform poorer with 72.4% and 60.9% irrelevant test cases and 10.3% and 21.8%
failed test cases, respectively. The failed test cases are related to the format of
requests and responses or the filter mechanism of the get operation.

Systems A and B comply reasonably well with the RFCs.

System A fails 14.9% (format of request and response
messages, filter mechanism of the get operation).

Systems A and B have very few problems with the filter
mechanism of the get-config and edit-config

operations.

Systems C and D perform poorer (format of requests and
responses, filter mechanism of the get operation).

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 19



Preliminary Observations

Test result summary organized by the test suites

10 Tran, Tumar and Schönwälder

Table 6. Test result summary organized by the test suites

Test Suite Success Failure Irrelevant

general 73.6% 13.2% 13.2%

get 29.5% 52.3% 18.2%

get-config 48.4% 14.1% 37.5%

edit-config 38.3% 1.7% 60%

vacm 19.2% 5.8% 75%

Table 6 reports the passed and failed test cases organized by the test suites
over the total number of running test cases for the systems under test. There
are two remarks: (i) the get suite obtains a high percentage of failed test cases
52.3%, and (ii) the edit-config suites obtains low percents of failed test cases
1.7%. We found that the majority of failed test cases from the get suite is
related to the filter mechanism of the get operation.

With the failed test cases in mind, we have looked back into the RFCs. There
are several things where the RFC is either somewhat ambiguous or totally silent.
In general, the RFC should provide more detailed descriptions for error situations
and it might be necessary to better constrain the currently open ended format
of request and response messages since they for example allow arbitrary values
for attributes. Furthermore, the RFC should be updated with clearer examples.
Some particular issues are listed below:

– The RFC ignores the XML declaration

<?xml version$="1.0" encoding="UTF-8"?>

for requests and responses. Some systems do not execute a request without
this declaration while other systems do. It seems that the IETF working
group favours to have a mandatory XML declaration.

– The examples in RFC 4741 often omit namespace declarations for request
and response messages. Only few systems execute a request without a proper
namespace declaration and it would help interoperability if the examples
would contain namespace declarations where necessary.

– RFC 4741 requires that additional attributes present in the <rpc> element
of a request message must be returned in the <rpc-reply> element of the
response message without any change (see section 4.1 of the RFC 4741).
This requirement leads to problems when such an attribute conflicts with
attributes generated by the implementation. One implementation generated
duplicated attributes (and thus invalid XML) while another implementation
removes a duplicated attribute resulting in violation of RFC 4741.

– RFC 4741 allows arbitrary strings for the message-id attribute. From the
tests, we found that implementations terminate the session often without
an error indication or return strange results when the message-id attribute
in a request message contains unexpected content such as the literal string
]]>]]> or the literal string </rpc>. Of course, a proper NETCONF client
would not generate such request messages since they are invalid XML. But

We did manually re-check the failed test cases in order to
erase bugs in the test scripts.

Several test cases reflect our interpretation of RFC 4741
and there might not be full agreement with our
interpretation and thus the numeric results in the previous
tables should be taken with a grain of salt.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 20



Observations about RFC4741

There are several things where the RFC is either
somewhat ambiguous or totally silent.

The RFC should provide more detailed descriptions for
error situations.

It might be necessary to better constrain the currently
open ended format of request and response messages
since they for example allow arbitrary values for attributes.

The RFC should be updated with clearer examples.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 21



Observations about RFC4741

Some particular issues are listed below:

The RFC ignores the XML declaration for requests and
responses.

10 Tran, Tumar and Schönwälder

Table 6. Test result summary organized by the test suites

Test Suite Success Failure Irrelevant

general 73.6% 13.2% 13.2%

get 29.5% 52.3% 18.2%

get-config 48.4% 14.1% 37.5%

edit-config 38.3% 1.7% 60%

vacm 19.2% 5.8% 75%

Table 6 reports the passed and failed test cases organized by the test suites
over the total number of running test cases for the systems under test. There
are two remarks: (i) the get suite obtains a high percentage of failed test cases
52.3%, and (ii) the edit-config suites obtains low percents of failed test cases
1.7%. We found that the majority of failed test cases from the get suite is
related to the filter mechanism of the get operation.

With the failed test cases in mind, we have looked back into the RFCs. There
are several things where the RFC is either somewhat ambiguous or totally silent.
In general, the RFC should provide more detailed descriptions for error situations
and it might be necessary to better constrain the currently open ended format
of request and response messages since they for example allow arbitrary values
for attributes. Furthermore, the RFC should be updated with clearer examples.
Some particular issues are listed below:

– The RFC ignores the XML declaration

<?xml version$="1.0" encoding="UTF-8"?>

for requests and responses. Some systems do not execute a request without
this declaration while other systems do. It seems that the IETF working
group favours to have a mandatory XML declaration.

– The examples in RFC 4741 often omit namespace declarations for request
and response messages. Only few systems execute a request without a proper
namespace declaration and it would help interoperability if the examples
would contain namespace declarations where necessary.

– RFC 4741 requires that additional attributes present in the <rpc> element
of a request message must be returned in the <rpc-reply> element of the
response message without any change (see section 4.1 of the RFC 4741).
This requirement leads to problems when such an attribute conflicts with
attributes generated by the implementation. One implementation generated
duplicated attributes (and thus invalid XML) while another implementation
removes a duplicated attribute resulting in violation of RFC 4741.

– RFC 4741 allows arbitrary strings for the message-id attribute. From the
tests, we found that implementations terminate the session often without
an error indication or return strange results when the message-id attribute
in a request message contains unexpected content such as the literal string
]]>]]> or the literal string </rpc>. Of course, a proper NETCONF client
would not generate such request messages since they are invalid XML. But

The examples in RFC 4741 often omit namespace
declarations for request and response messages. It would
help interoperability if the examples would contain
namespace declarations where necessary.

RFC 4741 allows arbitrary strings for the message-id
attribute. These arbitrary strings terminate the session
often without an error indication or return strange
results.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 22



Outline

1 NETCONF Overview

2 Systems Under Test

3 Test Plan

4 NETCONF Interoperability Testing tool (NIT)

5 Preliminary Observations

6 Conclusions and Future Work

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 23



Conclusions

This work aims at observing the compliance of
NETCONF implementations with RFC 4741.

We have used the NIT tool to test four different
NETCONF implementations.

Our preliminary observations indicate that the number of
failed test cases is relatively high for some systems.

We have also noted some inconsistencies in RFC 4741.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 24



Future Work

This work still requires several improvements:

Increased the number of test cases.

It would be nice to reduce the dependency of the test
cases on different data models.

The NIT tool should be improved to better support more
complicated test cases that involve multiple NETCONF
sessions.

It would be valuable to repeat the tests with a larger
number of different NETCONF implementations.

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 25



THANK YOU

Questions?

Ha Manh Tran, Iyad Tumar, Jürgen Schönwälder NETCONF Interoperability Testing 26


	NETCONF Overview
	Systems Under Test
	Test Plan
	NETCONF Interoperability Testing tool (NIT)
	Preliminary Observations
	Conclusions and Future Work

