
Design of a Stream-based IP Flow Record

Query Language

Vladislav Marinov, Jürgen Schönwälder

DSOM 2009, Venice, 2009-10-27

Support: EU IST-EMANICS Network of Excellence (#26854)

1 / 21

Outline of the Talk

1 Motivating Example: Blaster Worm

2 State of the Art and Problem Statement

3 Stream-based Flow Query Language

4 Blaster Worm Example Continued

5 Conclusions

2 / 21

Motivating Example: Blaster Worm

1 Motivating Example: Blaster Worm

2 State of the Art and Problem Statement

3 Stream-based Flow Query Language

4 Blaster Worm Example Continued

5 Conclusions

3 / 21

Blaster Worm Infection

scan

transmit RPC DCOM exploit code

initiate worm code download

execute remote Blaster worm code

download worm code by TFTP

 4444 TCP

135 TCP

135 TCP

4444 TCP

TFTP client

Victim hostInfected host

Blaster

69 UDP

4 / 21

Blaster Worm Infection Flow Pattern

Attacker.AP1 Victim1.135

SYN

Attacker.AP2

Attacker.AP2

SYN

1pkt, 40bytes

1pkt, 40bytes
Victim2.135

RST

1pkt, 40bytes
Victim2.135

SYN|ACK|PSH|FIN
Attacker.AP3 Victim3.135

~2000 bytes

Attacker.AP3 Victim3.135
SYN|ACK|FIN

small

SYN|ACK|PSH|FIN
Attacker.AP4 Victim3.4444

SYN|ACK|PSH|FIN
Victim3.4444Attacker.AP4

Attacker.69 Victim3.VP1
UDP

Attacker.69 Victim3.VP1
UDP

13 pkts, 6176 bytes

time

5 / 21

State of the Art and Problem Statement

1 Motivating Example: Blaster Worm

2 State of the Art and Problem Statement

3 Stream-based Flow Query Language

4 Blaster Worm Example Continued

5 Conclusions

6 / 21

Existing Query Languages

Existing Approaches

SQL-based languages such as Gigascope [1] and Tribeca
[2] can lead to poor query performance or with SQL
optimizations to poor insert performance

Filtering languages such as those used by nfdump,
flow-tools [3], CoralReef [4] lack a time and concurrency
dimension

Procedural query languages such as those used by
NeTraMet, flow-tools, Stager [5], Silk [6] are powerful but
not trivial to understand

Conclusion

Existing languages cannot describe traffic patterns
composed of a set of flows that have time dependencies

7 / 21

Problem Statement and Approach

Problem Statement

Describe and identify the occurrence of network traffic
patterns in a collection of flow records

Describe the timing (causal) relationships between flows
involved in a pattern

Approach

We propose a new IP flow record query language to describe
network traffic patterns in a declarative and easy to
understand way using Allen’s time interval algebra.

A comprehensible set of language primitives will be built

The flow patterns of some common network services and
application will be derived

8 / 21

Stream-based Flow Query Language

1 Motivating Example: Blaster Worm

2 State of the Art and Problem Statement

3 Stream-based Flow Query Language

4 Blaster Worm Example Continued

5 Conclusions

9 / 21

Framework for IP Flow Filtering

filter grouper group-filter

splitter
merger un-grouper

input

branch 1

branch 2

branch N

grouper

grouper group-filter

group-filterfilter

filter

output

output

output

flow records group records group record

N-tuples

flow records

Stream-based approach with several operators

Primitives to express timing and concurrency relationships

Primitives to define dependencies among flow attributes

10 / 21

Blaster Worm Example Continued

1 Motivating Example: Blaster Worm

2 State of the Art and Problem Statement

3 Stream-based Flow Query Language

4 Blaster Worm Example Continued

5 Conclusions

11 / 21

Blaster Worm Infection Query

f_scan g_scan gf_scan

f_victim g_group_tcp

f_control g_group_tcp

f_tftp g_tftp gf_tftp

S M Uinput output

A

B

C

D

A branch capturing the scanning (TCP/135) acitivity

B branch capturing the exploit (TCP/135) activity

C branch capturing the control (TCP/4444) activity

D branch capturing the TFTP (UDP/69) download

12 / 21

Wiring of the Query Operators

f_scan g_scan gf_scan

f_victim g_group_tcp

f_control g_group_tcp

f_tftp g_tftp gf_tftp

S M Uinput output

A

B

C

D

splitter S {}

ungrouper U {}

input -> S

S branch A -> f-scan -> g-scan ->gf-scan -> M

S branch B -> f-victim -> g-group-tcp -> M

S branch C -> f-control -> g-group-tcp -> M

S branch D -> f-tftp -> g-tftp -> M

M -> U -> output

13 / 21

A: Capturing Scanning Activity

filter f-scan { grouper g-scan {

dstport = 135 module g1 {

proto = tcp srcip = srcip

flags = S dstip = dstip relative-delta 1

} stime = stime relative-delta 5ms

stime = stime absolute-delta 5s

}

aggregate srcip, union(dstip),

group-filter gf-scan { min(stime), max(etime),

count > 20 count

} }

The filter f-scan selects TCP/135 flows

The grouper g-scan groups all filtered flows with
consecutive destination IP addresses within a maximum
absolute time of 5s an a relative time delta of 5ms

the group filter requires that a group of scanning flows
contains at least 20 flows

14 / 21

B & C: Capturing Exploit and Control

filter f-victim {

srcport = 135 OR dstport = 135

proto = tcp

}

filter f-control {

srcport = 4444 OR dstport = 4444

proto = tcp

}

The filter f-victim selects TCP/135 flows

The filter f-control selects TCP/4444 flows

The selected flows can have arbitrary TCP flags

15 / 21

B & C: Grouping TCP Flow Records

grouper g-group-tcp {

module g1 {

srcip = dstip

dstip = srcip

srcport = dstport

dstport = srcport

stime = stime relative-delta 5ms

}

module g2 {

srcip = srcip

dstip = dstip

srcport = srcport

dstport = dstport

stime = stime relative-delta 5ms

}

aggregate g1.srcip as srcip,

g1.dstip as dstip

min(stime) as stime,

max(etime) as etime

}

Group “forward” and
“reverse” TCP flows
(g1)

Group multiple flow
records for the same
flow (g2)

Aggregate carries srcip
and dstip (from g1)
plus a meaningful start
and end timestamp

16 / 21

D: Capturing TFTP Download

filter f-tftp { grouper g-tftp {

srcport = 69 module g1 {

OR dstport = 69 srcip = dstip

proto = udp dstip = srcip

} srcport = dstport

dstport = srcport

group-filter gf-tftp { stime = stime relative-delta 5ms

bytes > 6K }

} module g2 {

srcip = srcip

dstip = dstip

srcport = srcport

dstport = dstport

stime = stime relative-delta 5ms

}

aggregate g1.srcip as srcip,

g1.dstip as dstip

min(stime) as stime,

max(etime) as etime,

g2.sum(bytes) as bytes

}

17 / 21

M: Merging Branches

merger M {

A.srcip = B.srcip

A.srcip = C.srcip

A.srcip = D.dstip

B.dstip = C.dstip

B.dstip = D.srcip

B.dstip in union(A.dstip)

A < B OR A m B OR A o B

B o C

D d C

}

A < B: A (scan) before B (exploit)

A m B: A (scan) meets B (exploit)

A o B: A (scan) overlaps B (exploit)

B o C: B (exploit) overlaps with C (control)

D d C: D (tftp transfer) during C (control)

18 / 21

Conclusions

1 Motivating Example: Blaster Worm

2 State of the Art and Problem Statement

3 Stream-based Flow Query Language

4 Blaster Worm Example Continued

5 Conclusions

19 / 21

Conclusions

Contribution

Design of a new stream-based flow query language
supporting operators to express timing relationships
between flows

Demonstration of language features using the Blaster
Worm Infection

Current Status and Future Work

First implementation (flowy) written in Python completed

Flowy performance analysis and optimization

More advanced query analysis and optimizations

Distributed processing of queries using mediators

20 / 21

References

C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.

Gigascope: A Stream Database for Network Applications.
In Proceedings of SIGMOD’03, pages 647–651, New York, NY, USA, 2003. ACM.

M. Sullivan and A. Heybey.

Tribeca: a System for Managing Large Databases of Network Traffic.
In Proceedings of ATEC’98, pages 13–24, Berkeley, CA, USA, 1998. USENIX Association.

S. Romig.

The OSU Flow-tools Package and CISCO NetFlow Logs.
In Proceedings of LISA ’00, pages 291–304, Berkeley, CA, USA, 2000. USENIX Association.

D. Moore, K. Keys, R. Koga, E. Lagache, and KC. Claffy.

The Coral Reef Software Suite as a Tool for System and Network Administration.
In Proceedings of LISA’01, pages 133–144, Berkeley, CA, 2001. USENIX Association.

A. Oslebo.

Stager-A Web Based Application for Presenting Network Statistics.
In Proceedings of NOMS’06, 2006.

Michael Collins, Andrew Kompanek, and Timothy Shimeall.

Analysts’ Handbook: Using SiLK for Network Traffic Analysis.
CERT, 0.10.3 edition, November 2006.

T. Dübendorfer, A. Wagner, T. Hossmann, and B. Plattner.

Flow-level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone.
In Proceedings of DIMVA’05, Vienna, Austria, July 2005. Springer’s Lecture Notes in Computer Science
(LNCS 3548).

21 / 21

	Motivating Example: Blaster Worm
	State of the Art and Problem Statement
	Stream-based Flow Query Language
	Blaster Worm Example Continued
	Conclusions

