
Session Resumption for the

Secure Shell Protocol

Jürgen Schönwälder

http://www.eecs.jacobs-university.de/users/schoenw/

June 3, 2009

1 / 18

http://www.eecs.jacobs-university.de/users/schoenw/

Outline of the Talk

1 Background and Motivation

2 Review of the Secure Shell Protocol

3 Session Resumption with Server Side State

4 Session Resumption with Client Side State

5 Performance Evaluation

6 Conclusions

2 / 18

Background: ISMS Work in the IETF

CACHE

Dispatcher

Transport

Mapping

Subsystem

SSHTM

Subsystem

SNMP Engine (identified by snmpEngineID)

Control

Access

Subsystem

Security

TSM

Subsystem

Processing

Message

IETF ISMS WG is extending SNMP so that SNMP can
leverage secure transports such as SSH, TLS, DTLS, ...

Requires extensions of the RFC 3411 SNMP architecture

3 / 18

Early Performance Results (DSOM 2006)

Protocol Time (meat) Time (turtle) Data Packets
v2c/UDP 1.03 ms 0.70 ms 232 bytes 2
v2c/TCP 1.13 ms 1.00 ms 824 bytes 10

v3/USM/UDP 1.97 ms 2.28 ms 668 bytes 4
v3/USM/TCP 2.03 ms 3.03 ms 1312 bytes 12

v2c/SSH 16.17 ms 91.62 ms 4388 bytes 32
v2c/TLS 18.00 ms 4109 bytes 16

Overhead of SSH session establishment was measured
using response time of an snmpget operation

SNMPv2c/SSH introduces significant overhead for
session establishment

SNMPv2c/TLS uses less packets but exchanges similar
amount of data

However, overhead can be amortized over long sessions. . .

4 / 18

More Recent Performance Results. . .

Protocol
Time (meat) [ms] Time (turtle) [ms]

Data [bytes] Packets
min avg max min avg max

v1/CSM/UDP/nn 0.24 0.25 0.29 0.85 0.95 1.43 292 2
v1/CSM/TCP/nn 0.39 0.40 0.43 1.27 1.38 1.72 1012 10
v2/CSM/UDP/nn 0.24 0.25 0.30 0.85 0.96 1.50 292 2
v2/CSM/TCP/nn 0.46 0.48 0.58 1.28 1.46 2.40 1012 10
v3/USM/UDP/nn 0.48 0.48 0.54 1.75 1.84 1.95 718 4
v3/USM/TCP/nn 0.63 0.64 0.69 2.22 2.46 9.59 1490 12
v3/USM/UDP/an 0.50 0.63 0.87 1.79 1.89 2.34 742 4
v3/USM/TCP/an 0.65 0.66 0.70 2.21 2.31 2.48 1514 12
v3/USM/UDP/ap 0.51 0.52 0.59 1.88 2.05 4.17 763 4
v3/USM/TCP/ap 0.66 0.68 0.71 2.31 2.42 2.60 1535 12
v3/TSM/SSH/ap 13.49 13.73 14.20 107.35 110.45 144.33 5310 31
v3/TSM/TLS/ap 11.01 11.15 12.57 67.44 68.70 86.59 4107 16

v3/TSM/DTLS/ap 10.89 11.05 12.00 67.68 69.96 155.10 3457 8
v3/TSM/TLSsr/ap 2.23 2.27 2.45 5.47 5.72 6.28 1457 15

SSH (TLS/DTLS) transports behave like a DoS attack
for short-lived SNMP sessions (e.g., shell scripts)

TLS’s session resumption mechanism cures the problem

How can we do session resumption with SSH?

5 / 18

SSH Protocol Overview

SSH Protocol Layers

1 The Transport Layer Protocol provides server
authentication, confidentiality, and integrity with perfect
forward secrecy

2 The User Authentication Protocol authenticates the
client-side user to the server

3 The Connection Protocol multiplexes the encrypted
data stream into several logical channels

⇒ SSH authentication is not symmetric!

⇒ The SSH protocol is designed for clarity, not necessarily
for efficiency (shows its academic roots)

6 / 18

Some SSH and OpenSSH Features

SSH Port Forwarding

Allows users to tunnel unencrypted traffic through an
encrypted SSH connection.

OpenSSH SSH Agent

Maintains client credentials during a login session so that
credentials can be reused without further user interaction

OpenSSH Connection Sharing

New SSH connections hook as a new channel into an existing
SSH connection.

7 / 18

Details of an SNMP GET Operation over SSH

packets

Manager Agent

3 TCP

10 SSH
transport

packets

packets

2 TCP

HELLO

KEX_INIT

KEXDH_INIT

KEXDH_REPLY

NEWKEYS

SERVICE_REQUEST

SERVICE_ACCEPT

NEWKEYS

SYN, ACK

ACK

KEX_INIT

HELLO

SYN

ACK

ACK

3 TCP

2 SSH

2 SSH
channel

user auth

6 SSH

packets

packets

packets

packets

packets

2 SNMP

AgentManager

RESPONSE

CHANNEL_OPEN

FIN, ACK

DISCONNECT

USERAUTH_FAILURE

USERAUTH_REQUEST

GET

USERAUTH_FAILURE

FIN, ACK

CHANNEL_OPEN_CONF.

ACK

USERAUTH_REQUEST

USERAUTH_SUCCESS

USERAUTH_REQUEST

DISCONNECT

8 / 18

Session Resumption Key Exchange

NEWKEYS

Client

KEXINIT

KEXINIT

KEX_SR_INIT

KEX_SR_OK

Server

NEWKEYS

Server maintains session state for recently closed sessions

Client and server perform session resumption by using of
a session resumption key exchange algorithm

SSH’s algorithm negotiation feature handles this nicely

9 / 18

Session Resumption with Server Side State

Algorithm (Server Side State)

C: Client sends the session identifier and a MAC computed
over the session keys to the server in a
SSH2 MSG KEXSR INIT message

S: Server looks up the cached session and verifies the MAC

If successful, it returns an SSH2 MSG KEX SR OK message,
followed by a standard SSH2 MSG NEWKEYS exchange
On failure, SSH2 MSG KEX SR ERROR is sent and key
exchange proceeds with another key exchange algorithm,
or fails

+ Simple design and easy to implement

− Server has to maintain session state (scalability)

10 / 18

Session Resumption with Client Side State

Algorithm (Client Side State)

S: After key (re)negotiation, the server sends an encrypted
ticket in a SSH2 MSG KEX SR TICKET message

C: The client sends the encrypted ticket and a MAC
computed over the session identifier to the server in a
SSH2 MSG KEXSR INIT message

S: The server decrypts the ticket and verifies the MAC

If successful, it returns an SSH2 MSG KEX SR OK message,
followed by a standard SSH2 MSG NEWKEYS exchange.
On failure, SSH2 MSG KEX SR ERROR is sent and key
exchange proceeds with another key exchange algorithm,
or fails.

+ Server side state reduced to a key for encrypting tickets

11 / 18

TicketContent Data Structure

struct TicketEnc { struct TicketContent {
char* name; u_char* session_id;
u_char* key; u_int session_id_len;
u_char* iv; TicketEnc tenc_ctos;

}; TicketEnc tenc_stoc;
TicketMac tmac_ctos;
TicketMac tmac_stoc;

struct TicketMac { char* tcomp_ctos;
char* name; char* tcomp_stoc;
u_char* key; int hostkey_type;

}; char* client_version_string;
char* server_version_string;

};

SSH allows to use different algorithms in each direction!

12 / 18

Ticket Data Structure

struct Ticket {
u_int seq_nr;
u_char* id;
u_char* enc_ticket;
u_int enc_ticket_len;
int64_t time_stamp;

};

Contains the encrypted TicketContent data structure in
enc ticket

The id uniquely identifiers a ticket

The seq nr and time stamp fields can be used to
quickly discard outdated tickets

Encryption key and its IV are generated at server start-up

13 / 18

Performance Evaluation

Name CPUs RAM Ethernet Kernel
meat 2 Xeon 3 GHz 2 GB 1 Gbps 2.6.16.29

veggie 2 Xeon 3 GHz 1 GB 1 Gbps 2.6.16.29
turtle 1 Ultra Sparc IIi 128 MB 100 Mbps 2.6.20

SSH client: veggie / SSH server: meat and turtle

Measuring overall execution time of “ssh $host exit”

Used HMAC-MD5 hash function and AES-128 encryption

Hosts and the network were idle during the experiments

1000 experiments, results sorted by the measured latency

Absolute numbers irrelevant, look at relative numbers

14 / 18

Session Resumption Performance (key length 1024)

 100

 120

 140

 160

 180

 200

 220

 240

 0 100 200 300 400 500 600 700 800 900 1000

o
v
e

ra
ll

la
te

n
c
y
 [

m
s
]

test runs (sorted by increasing latency)

impact of session resumption on meat (key len 1024 bit)

session resumption
no session resumption

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

o
v
e

ra
ll

la
te

n
c
y
 [

m
s
]

test runs (sorted by increasing latency)

impact of session resumption on turtle (key len 1024 bit)

session resumption
no session resumption

With a key length of 1024 bits, the performance gain on
an idle fast machine is observable but small

With the same key length, the performance gain on a
small idle machine is significant (factor 4)

⇒ Session resumption is particularly useful for processing
power constrained low-end consumer /enterprise products

15 / 18

Impact of the Key Length on the Performance

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

o
v
e

ra
ll

la
te

n
c
y
 [

m
s
]

test runs (sorted by increasing latency)

impact of session resumption on meat (varying key len)

 sr (3072 bit)
no sr (1024 bit)
no sr (2048 bit)
no sr (3072 bit)

Session resumption performance is largely independent of
the key length

With increasing key length, the performance gain
increases also on fast idle machines

⇒ Even on a fast processors, the performance gain is
significant if you need long keys to achieve strong security

16 / 18

Conclusions

Contribution

Proposed a session resumption mechanism for SSH

Implemented and evaluated using the OpenSSH package

Makes SNMP over SSH viable for short-lived sessions

Other usages

interactive command line completion

system management scripts

short lived sftp sessions

. . .

17 / 18

References

V. Marinov and J. Schönwälder.

Performance Analysis of SNMP over SSH.
In Proc. 17th IFIP/IEEE International Workshop on Distributed Systems: Operations and Management
(DSOM 2006), number 4269 in LNCS, pages 25–36, Dublin, October 2006. Springer.

J. Schönwälder and V. Marinov.

On the Impact of Security Protocols on the Performance of SNMP.
(under review), 2008.

J. Schönwälder, G. Chulkov, E. Asgarov, and M. Cretu.

Session Resumption for the Secure Shell Protocol.
In Proc. 11th IFIP/IEEE International Symposium on Integrated Network Management (IM 2009), May
2009.

H. Shacham, D. Boneh, and E. Rescorla.

Client-Side Caching for TLS.
ACM Transactions on Information and System Security, 7(4):553–575, November 2004.

X. Du, M. Shayman, and M. Rozenblit.

Implementation and Performance Analysis of SNMP on a TLS/TCP Base.
In Proc. 7th IFIP/IEEE International Symposium on Integrated Network Management, pages 453–466,
Seattle, May 2001.

18 / 18

	Background and Motivation
	Review of the Secure Shell Protocol
	Session Resumption with Server Side State
	Session Resumption with Client Side State
	Performance Evaluation
	Conclusions

