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Background: ISMS Work in the IETF
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IETF ISMS WG is extending SNMP so that SNMP can
leverage secure transports such as SSH, TLS, DTLS, ...

Requires extensions of the RFC 3411 SNMP architecture
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Early Performance Results (DSOM 2006)

Protocol Time (meat) Time (turtle) Data Packets
v2c/UDP 1.03 ms 0.70 ms 232 bytes 2
v2c/TCP 1.13 ms 1.00 ms 824 bytes 10

v3/USM/UDP 1.97 ms 2.28 ms 668 bytes 4
v3/USM/TCP 2.03 ms 3.03 ms 1312 bytes 12

v2c/SSH 16.17 ms 91.62 ms 4388 bytes 32
v2c/TLS 18.00 ms 4109 bytes 16

Overhead of SSH session establishment was measured
using response time of an snmpget operation

SNMPv2c/SSH introduces significant overhead for
session establishment

SNMPv2c/TLS uses less packets but exchanges similar
amount of data

However, overhead can be amortized over long sessions. . .
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More Recent Performance Results. . .

Protocol
Time (meat) [ms] Time (turtle) [ms]

Data [bytes] Packets
min avg max min avg max

v1/CSM/UDP/nn 0.24 0.25 0.29 0.85 0.95 1.43 292 2
v1/CSM/TCP/nn 0.39 0.40 0.43 1.27 1.38 1.72 1012 10
v2/CSM/UDP/nn 0.24 0.25 0.30 0.85 0.96 1.50 292 2
v2/CSM/TCP/nn 0.46 0.48 0.58 1.28 1.46 2.40 1012 10
v3/USM/UDP/nn 0.48 0.48 0.54 1.75 1.84 1.95 718 4
v3/USM/TCP/nn 0.63 0.64 0.69 2.22 2.46 9.59 1490 12
v3/USM/UDP/an 0.50 0.63 0.87 1.79 1.89 2.34 742 4
v3/USM/TCP/an 0.65 0.66 0.70 2.21 2.31 2.48 1514 12
v3/USM/UDP/ap 0.51 0.52 0.59 1.88 2.05 4.17 763 4
v3/USM/TCP/ap 0.66 0.68 0.71 2.31 2.42 2.60 1535 12
v3/TSM/SSH/ap 13.49 13.73 14.20 107.35 110.45 144.33 5310 31
v3/TSM/TLS/ap 11.01 11.15 12.57 67.44 68.70 86.59 4107 16

v3/TSM/DTLS/ap 10.89 11.05 12.00 67.68 69.96 155.10 3457 8
v3/TSM/TLSsr/ap 2.23 2.27 2.45 5.47 5.72 6.28 1457 15

SSH (TLS/DTLS) transports behave like a DoS attack
for short-lived SNMP sessions (e.g., shell scripts)

TLS’s session resumption mechanism cures the problem

How can we do session resumption with SSH?
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SSH Protocol Overview

SSH Protocol Layers

1 The Transport Layer Protocol provides server
authentication, confidentiality, and integrity with perfect
forward secrecy

2 The User Authentication Protocol authenticates the
client-side user to the server

3 The Connection Protocol multiplexes the encrypted
data stream into several logical channels

⇒ SSH authentication is not symmetric!

⇒ The SSH protocol is designed for clarity, not necessarily
for efficiency (shows its academic roots)
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Some SSH and OpenSSH Features

SSH Port Forwarding

Allows users to tunnel unencrypted traffic through an
encrypted SSH connection.

OpenSSH SSH Agent

Maintains client credentials during a login session so that
credentials can be reused without further user interaction

OpenSSH Connection Sharing

New SSH connections hook as a new channel into an existing
SSH connection.
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Details of an SNMP GET Operation over SSH
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Session Resumption Key Exchange
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Server maintains session state for recently closed sessions

Client and server perform session resumption by using of
a session resumption key exchange algorithm

SSH’s algorithm negotiation feature handles this nicely
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Session Resumption with Server Side State

Algorithm (Server Side State)

C: Client sends the session identifier and a MAC computed
over the session keys to the server in a
SSH2 MSG KEXSR INIT message

S: Server looks up the cached session and verifies the MAC

If successful, it returns an SSH2 MSG KEX SR OK message,
followed by a standard SSH2 MSG NEWKEYS exchange
On failure, SSH2 MSG KEX SR ERROR is sent and key
exchange proceeds with another key exchange algorithm,
or fails

+ Simple design and easy to implement

− Server has to maintain session state (scalability)
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Session Resumption with Client Side State

Algorithm (Client Side State)

S: After key (re)negotiation, the server sends an encrypted
ticket in a SSH2 MSG KEX SR TICKET message

C: The client sends the encrypted ticket and a MAC
computed over the session identifier to the server in a
SSH2 MSG KEXSR INIT message

S: The server decrypts the ticket and verifies the MAC

If successful, it returns an SSH2 MSG KEX SR OK message,
followed by a standard SSH2 MSG NEWKEYS exchange.
On failure, SSH2 MSG KEX SR ERROR is sent and key
exchange proceeds with another key exchange algorithm,
or fails.

+ Server side state reduced to a key for encrypting tickets
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TicketContent Data Structure

struct TicketEnc { struct TicketContent {
char* name; u_char* session_id;
u_char* key; u_int session_id_len;
u_char* iv; TicketEnc tenc_ctos;

}; TicketEnc tenc_stoc;
TicketMac tmac_ctos;
TicketMac tmac_stoc;

struct TicketMac { char* tcomp_ctos;
char* name; char* tcomp_stoc;
u_char* key; int hostkey_type;

}; char* client_version_string;
char* server_version_string;

};

SSH allows to use different algorithms in each direction!
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Ticket Data Structure

struct Ticket {
u_int seq_nr;
u_char* id;
u_char* enc_ticket;
u_int enc_ticket_len;
int64_t time_stamp;

};

Contains the encrypted TicketContent data structure in
enc ticket

The id uniquely identifiers a ticket

The seq nr and time stamp fields can be used to
quickly discard outdated tickets

Encryption key and its IV are generated at server start-up
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Performance Evaluation

Name CPUs RAM Ethernet Kernel
meat 2 Xeon 3 GHz 2 GB 1 Gbps 2.6.16.29

veggie 2 Xeon 3 GHz 1 GB 1 Gbps 2.6.16.29
turtle 1 Ultra Sparc IIi 128 MB 100 Mbps 2.6.20

SSH client: veggie / SSH server: meat and turtle

Measuring overall execution time of “ssh $host exit”

Used HMAC-MD5 hash function and AES-128 encryption

Hosts and the network were idle during the experiments

1000 experiments, results sorted by the measured latency

Absolute numbers irrelevant, look at relative numbers
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Session Resumption Performance (key length 1024)
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With a key length of 1024 bits, the performance gain on
an idle fast machine is observable but small

With the same key length, the performance gain on a
small idle machine is significant (factor 4)

⇒ Session resumption is particularly useful for processing
power constrained low-end consumer /enterprise products
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Impact of the Key Length on the Performance
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Session resumption performance is largely independent of
the key length

With increasing key length, the performance gain
increases also on fast idle machines

⇒ Even on a fast processors, the performance gain is
significant if you need long keys to achieve strong security
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Conclusions

Contribution

Proposed a session resumption mechanism for SSH

Implemented and evaluated using the OpenSSH package

Makes SNMP over SSH viable for short-lived sessions

Other usages

interactive command line completion

system management scripts

short lived sftp sessions

. . .
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J. Schönwälder and V. Marinov.

On the Impact of Security Protocols on the Performance of SNMP.
(under review), 2008.
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