
Introduction Programming WSNs Contiki Working with Contiki

A Practical Introduction to 6LoWPAN
Programming IPv6 Wireless Sensor Networks with Contiki

Anuj Sehgal
s.anuj@jacobs-university.de

Jacobs University Bremen, Germany

4th International Summer School on Network
and Service Management (ISSNSM 2010)



Introduction Programming WSNs Contiki Working with Contiki

Outline

1 Introduction
Wireless Sensor Networks
IEEE 802.15.4
6LoWPAN

2 Programming WSNs
Hardware Devices
Embedded Systems Programming

3 Contiki
System Overview
Kernel Architecture
Communication Support

4 Working with Contiki
Environment Setup
Programming Exercises
Demos



Introduction Programming WSNs Contiki Working with Contiki

Outline

1 Introduction
Wireless Sensor Networks
IEEE 802.15.4
6LoWPAN

2 Programming WSNs
Hardware Devices
Embedded Systems Programming

3 Contiki
System Overview
Kernel Architecture
Communication Support

4 Working with Contiki
Environment Setup
Programming Exercises
Demos



Introduction Programming WSNs Contiki Working with Contiki

Wireless Sensor Networks

Definition
A wireless sensor network is a wireless network consisting of
spatially distributed autonomous devices using sensors to
cooperatively monitor physical or environmental conditions, such
as temperature, pressure, gases or motion.

Wireless Sensor Networks

Definition

A wireless sensor network is a wireless network consisting of
spatially distributed autonomous devices using sensors to
cooperatively monitor physical or environmental conditions,
such as temperature, pressure, gases or motion.

8 / 234



Introduction Programming WSNs Contiki Working with Contiki

Wireless Sensor Networks

Characteristics
Spatially distributed and possibly mobile
Miniature hardware with sensors, radio and battery
Long-term large area deployments for unattended operation
Limited power and disruptive communications

Applications

Environmental monitoring (seismic detection)
Health and medical systems (patient monitoring)
Inventory tracking and logistics (shipping containers)
Smart spaces (home/office scenarios)
Smart grids



Introduction Programming WSNs Contiki Working with Contiki

Wireless Sensor Networks

Standards and Specifications
6LoWPAN - IPv6 networking for embedded devices, over
IEEE 802.15.4
ZigBee - networking specification for embedded devices, also
over IEEE 802.15.4
IEEE 1451 - standardized smart sensor devices
EnOcean - wireless energy harvesting for building automation
systems
WirelessHART - designed for industrial applications like
process monitoring and control



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4-2003 Standard

Overview
IEEE 802.15.4 is a standard which specifies the physical layer and
media access control for low-rate wireless personal area
networks (LR-WPANs). Basis for ZigBee, WirelessHART and
6LoWPAN.

Characteristics
20-250 kbps (2.4 GHz ISM band)
Direct Sequence Spread Spectrum (DSSS)
CSMA-CA medium access control
Link encryption (AES) (no key management)
Full / reduced function devices



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Radio Characteristics
Radio Characteristics (802.15.4-2003)

Frequencies and Data Rates

5 MHz

868.3 MHz

0

928 MHz

1 3 6 7 8 92 4 5 10

902 MHz 2 MHz

Channel

2.4 GHz 2.4835 GHz

11 12 13 14 15 16 17 19 20 21 22 23 24 25 2618

Frequency Channels Region Data Rate Baud Rate
868-868.6 MHz 0 Europe 20 kbit/s 20 kBaud
902-928 MHz 1-10 USA 40 kbit/s 40 kBaud

2400-2483.5 MHz 11-26 global 250 kbit/s 62.5 kBaud

28 / 234



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Device Classes

Full Function Device (FFD)

Any topology
PAN coordinator capable
Talks to any other device
Implements complete protocol set

Reduced Function Device (RFD)

Reduced protocol set
Very simple implementation
Cannot become a PAN coordinator
Limited to leaf nodes in more complex topologies



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Network Elements

Device
An RFD or FFD implementation containing an IEEE 802.15.4
medium access control and physical interface to the wireless
medium.

Coordinator
An FFD with network device functionality that provides
coordination and other services to the network.

PAN Coordinator
A coordinator that is the principal controller of the PAN. A network
has exactly one PAN coordinator.



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Frame Formats

General Frame Format

IEEE 802.15.4 Frame Formats

General Frame Format

mode

Frame

control

Sequence

number

Destination

identifier
PAN

Destination

address

Source
PAN

identifier

Source

address

Frame Frame

check
sequence

octets: 2 0/2 0/2/8

payload

0/2 0/2/8 variable 21

bits: 0−2

Frame

type

Security Ack. Intra

14−153 4 5 6 7−9 10−11 12−13

enabled

Frame

pending requested PAN
Reserved Reserved

mode

Dst addr Src addr

IEEE 64-bit extended addresses (globally unique)

16-bit “short” addresses (unique within a PAN)

Optional 16-bit source / destination PAN identifiers

max. frame size 127 octets; max. frame header 25 octets

35 / 234

16-bit “short” addresses (unique within a PAN)
Optional 16-bit source / destination PAN identifiers
max. frame size 127 octets; max. frame header 25 octets



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Frame Types

Beacon Frames
Broadcast by the coordinator to organize the network

Command Frames
Used for association, disassociation, data and beacon requests,
conflict notification and etc.

Data Frames
Carrying user data — this is what we are interested in



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Media Access Control

Carrier Sense Multiple Access / Collision Avoidance

Wait until the channel is idle
Once the channel is free, start sending data frame after some
random back-off interval
Receiver acknowledges the correct reception of a data frame
If the sender does not receive an acknowledgement, retry the
data transmission



Introduction Programming WSNs Contiki Working with Contiki

IEEE 802.15.4 Security

Security Services

Security Suite Description
Null No security (default)

AES-CTR Encryption only, CTR Mode
AES-CBC-MAC-128/64/32 128/64/32 bit MAC

AES-CCM-128/64/32 Encryption and 128/64/32 bit MAC

Key management must be provided by higher layers
Implementations must support AES-CCM-64 and Null



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Motivation

Benefits of IP over 802.15.4
The pervasive nature of IP networks allows use of existing
infrastructure.
IP-based technologies already exist, are well-known, and
proven to be working.
Open and freely available specifications vs. closed proprietary
solutions.
Tools for diagnostics, management, and commissioning of IP
networks already exist.
IP-based devices can be connected readily to other IP-based
networks, without the need for intermediate entities like
translation gateways or proxies.



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Challenges

Header Size Calculation
IPv6 header is 40 octets, UDP header is 8 octets
802.15.4 MAC header can be up to 25 octets (null security) or
25+21=46 octets (AES-CCM-128)
With the 802.15.4 frame size of 127 octets, we have only
following space left for application data!

127-25-40-8 = 54 octets (null security)
127-46-40-8 = 33 octets (AES-CCM-128)

IPv6 MTU Requirements
IPv6 requires that links support an MTU of 1280 octets
Link-layer fragmentation / reassembly is needed



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Overview

Overview
The 6LowPAN protocol is an adaptation layer allowing to
transport IPv6 packets over 802.15.4 links
Uses 802.15.4 in unslotted CSMA/CA mode (strongly suggests
beacons for link-layer device discovery)
Based on IEEE standard 802.15.4-2003
Fragmentation / reassembly of IPv6 packets
Compression of IPv6 and UDP/ICMP headers
Mesh routing support (mesh under)
Low processing / storage costs



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Dispatch Codes

All LoWPAN encapsulated datagrams are prefixed by an
encapsulation header stack.
Each header in the stack starts with a header type field followed by
zero or more header fields.

Bit Pattern Description

01 000001 uncompressed IPv6 addresses

01 000010 HC1 Compressed IPv6 header

01 010000 BC0 Broadcast header

01 111111 Additional Dispatch octet follows

10 xxxxxx Mesh routing header

11 000xxx Fragmentation header (first)

11 100xxx Fragmentation header (subsequent)



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Frame Format

6LowPAN Frame Formats

Uncompressed IPv6/UDP (worst case scenario)
max. 127 octets

preamble 802.15.4 MAC header F
C

S

2max. 23 / 44

D
S

P

1

UDP

8 up to 54 / 33

payloaduncompressed IPv6 header

40

Dispatch code (010000012) indicates no compression

Up to 54 / 33 octets left for payload with a max. size
MAC header with null / AES-CCM-128 security

The relationship of header information to application
payload is obviously really bad

51 / 234



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Frame Format

Compressed IPv6/UDP (best case scenario)

6LowPAN Frame Formats

Compressed Link-local IPv6/UDP (best case scenario)
max. 127 octets

802.15.4 MAC headerpreamble F
C

S

2max. 23 / 44

D
S

P
H

C
1

IP
v
6

1 1 1

UDP payload

8 up to 92 / 71

max. 127 octets

preamble 802.15.4 MAC header

max. 23 / 44

D
S

P
H

C
1

1 1 1

H
C

2

U
D

P
IP

v
6

1 3 2

F
C

S

payload

up to 97 / 76

Dispatch code (010000102) indicates HC1 compression

HC1 compression may indicate HC2 compression follows

This shows the maximum compression achievable for
link-local addresses (does not work for global addresses)

Any non-compressable header fields are carried after the
HC1 or HC1/HC2 tags (partial compression)

53 / 234

Dispatch code (010000102) indicates HC1 compression

HC1 compression may indicate HC2 compression follows

This shows the maximum compression achievable for link-local addresses
(does not work for global addresses)

Any non-compressable header fields are carried after the HC1 or
HC1/HC2 tags (partial compression)



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Header Compression

Compression Principles (RFC 4944)

Omit any header fields that can be calculated from the
context, send the remaining fields unmodified
Nodes do not have to maintain compression state (stateless
compression)
Support (almost) arbitrary combinations of compressed /
uncompressed header fields

Note: Header compression approach is currently being revised.



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Fragmentation & Reassembly

Fragmentation Principles (RFC 4944)

IPv6 packets to large to fit into a single 802.15.4 frame are
fragmented
A first fragment carries a header that includes the datagram
size (11 bits) and a datagram tag (16 bits)
Subsequent fragments carry a header that includes the
datagram size, the datagram tag, and the offset (8 bits)
Time limit for reassembly is 60 seconds



Introduction Programming WSNs Contiki Working with Contiki

6LoWPAN: Fragmentation & Reassembly

Fragmentation and Reassembly

Fragmentation Example (compressed link-local IPv6/UDP)

2

preamble 802.15.4 MAC header

max. 127 octets

F
C

S

max. 23 / 44

FRAG1 D
S

P
H

C
1

1 1 1

H
C

2

U
D

P
IP

v
6

1 34

payload

2

preamble 802.15.4 MAC header

max. 127 octets

F
C

S

max. 23 / 44

payloadFRAGN

5

Homework Question (consult RFC 4944 first)

How many fragments are created for an 1280 octet IPv6
packet with no / maximum compression and none /
AES-CCM-128 link-layer security?

How many fragmented datagrams can be in transit
concurrently for a 802.14.5 source / destination pair?

57 / 234



Introduction Programming WSNs Contiki Working with Contiki

Outline

1 Introduction
Wireless Sensor Networks
IEEE 802.15.4
6LoWPAN

2 Programming WSNs
Hardware Devices
Embedded Systems Programming

3 Contiki
System Overview
Kernel Architecture
Communication Support

4 Working with Contiki
Environment Setup
Programming Exercises
Demos



Introduction Programming WSNs Contiki Working with Contiki

Typical WSN Hardware

Mote Class Devices
Motes are small energy efficient computers based on
microcontrollers with a wireless interface and several sensors,
able to operate on battery power for months or years.



Introduction Programming WSNs Contiki Working with Contiki

Typical WSN Hardware

TelosB
8 MHz TI MSP430 (10kB RAM, 16kB ROM, 1MB flash)
802.15.4 2.4 GHz radio w/ antenna and integrated sensors

MicaZ
8 MHz Atmega128 AVR (4kB RAM, 128kB ROM, 512kB
flash)
802.15.4 2.4 GHz radio w/ antenna
Multiple sensors through daughter-boards

AVR Raven
8 MHz Atmega1284P AVR (16kB RAM, 128kB ROM)
8 MHz Atmega3290P AVR for LCD control
802.15.4 2.4 GHz radio w/ antenna



Introduction Programming WSNs Contiki Working with Contiki

Operating Model

Target Machine-code
This model compiles a program, which uses target hardware
specific APIs and libraries, to machine code. This program is
burned to node memory and cannot be altered without a
physical connection.
Programs are not portable to other platforms.

Operating Systems
This model provides a kernel on top of which user programs
are executed. The kernel compiles to target-machine code, but
the user program may or may not be part of the application
bundle to be burned in chip memory.
Dynamic loading and unloading of programs and services is
possible. Programs are portable to other platforms.



Introduction Programming WSNs Contiki Working with Contiki

API Programming Model

Characteristics
Embedded devices typically programmed by using appropriate
APIs and libraries
Cross-compiling of code necessary for target architecture
Compiled code is target processor machine code
Programmer needs to write drivers, configurations, memory
management
Close to assembly code
Cumbersome and error prone!



Introduction Programming WSNs Contiki Working with Contiki

API Programming Model

Example
void main(){

ADCSR |= (1<<ADPS2);
ADCSR |= (1<<ADFR);
ADMUX = currentChannel;
ADCSR |= (1<<ADIE);
ADCSR |= (1<<ADEN);
ADCSR |= (1<<ADSC);

ADC_read();
}



Introduction Programming WSNs Contiki Working with Contiki

Operating System Model

Characteristics
Kernel
Memory Management
Services and APIs
Program Execution
Hardware Drivers
Interaction
Abstraction



Introduction Programming WSNs Contiki Working with Contiki

Embedded Operating System Model

API	  Model	   OS	  Model	  
Emb.	  
OS	  

Characteristics
Kernel and Memory Management
Drivers, Services and APIs
Program Execution and Interaction
Cross Compilation Required
Burns an OS + application bundle



Introduction Programming WSNs Contiki Working with Contiki

Outline

1 Introduction
Wireless Sensor Networks
IEEE 802.15.4
6LoWPAN

2 Programming WSNs
Hardware Devices
Embedded Systems Programming

3 Contiki
System Overview
Kernel Architecture
Communication Support

4 Working with Contiki
Environment Setup
Programming Exercises
Demos



Introduction Programming WSNs Contiki Working with Contiki

About Contiki

An OS for sensor nodes
Ported to many hardware platforms

MSP430, AVR, HC12, Z80, x86

Plenty of hardware drivers
Network communication stack (including IP)
Event driven kernel
Protothreads



Introduction Programming WSNs Contiki Working with Contiki

System Overview

Overview
Contiki consists of:

Kernel, libraries, program loader, set of processes

Dynamically loadable services and applications
Inter-process communication through events



Introduction Programming WSNs Contiki Working with Contiki

Traditional Kernel Architectures

Event Driven
Processes do not run without events
Single event can grab CPU resources
Suitable for resource constrained applications and reactive
systems



Introduction Programming WSNs Contiki Working with Contiki

Traditional Kernel Architectures

Multi-threaded
Thread runs till blocking statement
Preemption
Large memory usage (threads need stacks)
Race conditions
Suitable for long running computations



Introduction Programming WSNs Contiki Working with Contiki

Contiki Kernel Architecture

Contiki Kernel
Contiki implements Optional Multitasking
Protothreads – stackless small memory thread design
Blocking and preemption on top of event-based kernel



Introduction Programming WSNs Contiki Working with Contiki

Communication Support

Contiki Networking
Contiki is a WSN OS and provides good communication
support
The μIP stack provides limited IP communications:

ARP, IP, ICMP, UDP

IPv6 support built into μIPv6



Introduction Programming WSNs Contiki Working with Contiki

Outline

1 Introduction
Wireless Sensor Networks
IEEE 802.15.4
6LoWPAN

2 Programming WSNs
Hardware Devices
Embedded Systems Programming

3 Contiki
System Overview
Kernel Architecture
Communication Support

4 Working with Contiki
Environment Setup
Programming Exercises
Demos



Introduction Programming WSNs Contiki Working with Contiki

Environment Setup

Virtual Machine
Recommended: Use the VMWare Virtual Machine provided
since it has all packages pre-installed.
Alternate: Download the latest version from
http://www.sics.se/contiki/



Introduction Programming WSNs Contiki Working with Contiki

Programming Exercises

Concepts
Cross compilation
Timers and Analog-Digital-Conversions
Hardware interaction (LEDs, sensors)
Terminal output (mote-to-PC)
IPv6 network setup
Implementing UDP protocols
Memory management
Multi-threading using protothreads



Introduction Programming WSNs Contiki Working with Contiki

Exercise 1

Provided
You are provided with a sample program that turns on and off the
LEDs on your TelosB motes. The program toggles every LED
within the same protothread.

Goal
Your task is to modify the program, such that, each LED blinks at
its own individual schedule, independent of all the other LEDs.
Since there are three LEDs available, make them blink at 1 Hz, 2
Hz and 4 Hz respectively.

Note: You may use the handout sheet for Exercise 1 to help you along the way.



Introduction Programming WSNs Contiki Working with Contiki

Exercise 2

Provided
You are provided with a sample program that reads values from the
light sensor on your TelosB motes. The program also outputs the
value read from the sensor to a console over the USB connection.

Goal
Your task is to modify the program, such that, each sensor on the
TelosB mote is sampled. Please note that the values returned by
the sensors are raw voltage values since these are just digital
representations of the analog voltages the sensor senses. It is also
your task to convert these values into human readable formats. You
will find helpful formulas in the handout for Exercise 2.

Note: You may use the handout sheet for Exercise 2 to help you along the way.
For obtaining ADC value conversion formulas on other hardware, please refer to
the datasheet of the manufacturer.



Introduction Programming WSNs Contiki Working with Contiki

Exercise 3

Background
Having completed exercises to work with hardware devices, you are
now familiar with concepts necessary to build more complex WSN
systems.

Goal
Using the programs from Exercise 1 and 2 as the basis, convert
your TelosB mote in to a light sensing device.The light intensity
should be classified into dark, light, medium, and strong light. A
mote should use the three LEDs to indicate whether it is dark (no
LED turned on), there is low light (one LED turned on), medium
light (two LEDs turned on) or strong light (all LED turned on).

Note: The concepts from this exercise may be used to build a system that
reacts to environmental conditions and dispatches messages over a network.



Introduction Programming WSNs Contiki Working with Contiki

Exercise 4

Goal
The goal of this exercise is to setup an IPv6 network of motes
that can be reached from your computers. Please follow the
exercise as explained in the hand-outs, or as demonstrated.
At the end of the exercise you will be able to connect to the
motes from your laptops, using IPv6 networking and also be
able to capture packets using Wireshark to observe the packet
fragmentation as it occurs in 6lowpan networks.



Introduction Programming WSNs Contiki Working with Contiki

Exercise 5

Provided
You are provided with a sample program that shows simple
communication using the UDP protocol over IPv6 networking. The
program sends a “Hello!” to the mote it connects to and responds
with a simple “Hello!” to the system that connects to it.

Goal
You must modify the program such that you can send commands
to each mote to turn on/off each individual LED as per
requirement. You must also be able to send a command to retrieve
the light sensor readings from the mote. A handout is provided to
assist you with the exercise.



Introduction Programming WSNs Contiki Working with Contiki

UDP Based Demos

Demo 1
Command Line Interface on a mote

Demo 2
Remote light sensor

Note: Sample code for these demos is provided.


	Introduction
	Wireless Sensor Networks
	IEEE 802.15.4
	6LoWPAN

	Programming WSNs
	Hardware Devices
	Embedded Systems Programming

	Contiki
	System Overview
	Kernel Architecture
	Communication Support

	Working with Contiki
	Environment Setup
	Programming Exercises
	Demos


