Performance Evaluation of a Multi-Radio Energy Conservation Scheme for Disruption Tolerant Networks

Iyad Tumar

Birzeit University

MOBIWAC 2010, Bodrum, Turkey

October 18, 2010

Disruption Tolerant Networks (DTNs)

- Developing network communication when connectivity is intermittent and prone to disruptions
- DTNs differ from traditional networks due to special characteristics
 - Frequent partitions, no end-to-end connection
 - Intermittent connectivity
 - Message delivery delay
 - Limited resources
- Efficient energy conservation schemes are necessary to prolong the network life time

Iyad Tumar

Disruption Tolerant Networks (DTNs)

- Developing network communication when connectivity is intermittent and prone to disruptions
- DTNs differ from traditional networks due to special characteristics
 - Frequent partitions, no end-to-end connection
 - Intermittent connectivity
 - Message delivery delay
 - Limited resources
- Efficient energy conservation schemes are necessary to prolong the network life time

Iyad Tumar

Disruption Tolerant Networks (DTNs)

- Developing network communication when connectivity is intermittent and prone to disruptions
- DTNs differ from traditional networks due to special characteristics
 - Frequent partitions, no end-to-end connection
 - Intermittent connectivity
 - Message delivery delay
 - Limited resources
- Efficient energy conservation schemes are necessary to prolong the network life time

Iyad Tumar

Some Examples/Applications of DTNs

- Military Battlefield Network
- Energy Constrained / Sparse Wireless Sensor Networks
- Underwater Acoustic Networks

Contribution

Single Radio

• Alternate between sleep mode and active mode to search for contacts and to exchange data

Multi-Radio

- Based only on the low power radio to discover contacts and to awake the high-power
- Based on the high power radio to undertake the data transmission

- Mobility Models
- Power Management of Disruption Tolerant Networks
- 2 Multi-Radio Power Management Scheme for DTNs
 - Performance Evaluation of the MR Power management Scheme
 - Impact of Different Mobility Models on the MR Power management Scheme
- Summary, Conclusions and Future Directions

- Mobility Models
- Power Management of Disruption Tolerant Networks
- 2 Multi-Radio Power Management Scheme for DTNs
 - Performance Evaluation of the MR Power management Scheme
 - Impact of Different Mobility Models on the MR Power management Scheme
- 3 Summary, Conclusions and Future Directions

Random Waypoint (RWP)

- The most common model used to evaluate routing protocols such as DSR and AODV
- Each node chooses some destination randomly and moves there in different speed

Message Ferry Mobility Model (MF)

- Regular nodes (often static nodes)
- Ferries which move around the deployed area in a deterministic path
 - Collect messages from the regular nodes
 - Deliver messages to their destinations or to other ferries

Mobility Models

Manhattan Mobility Model

- It uses a grid road topology for the movement in urban areas
- Nodes move in horizontal or vertical streets

ZebraNet Mobility Model

 Zebra Mobility models are based on zebra's movement habit

Human (Orlando) Mobility Model

• The Orlando mobility model is based on actual data gathered from human mobility

Power Management of DTNs

Oracles and Knowledge-Based Mechanisms

- These power management mechanisms based on knowledge of future contacts
- Assume that nodes have synchronized clocks
- Save 50% of the energy compared to the case when no power management apply

Hierarchical Power Management

- It is based on the previous mechanisms and assumes synchronization among nodes
- Use additional low-power radio to discover contacts and to awake the high-power radio to exchange data
- Saves 73% of the energy compared to the case when no power management apply

Power Management of DTNs

The Context Aware power Management Scheme (CAPM)

- Asynchronous mechanism (each node works on its own wake-up schedule)
- The CAPM scheme has a fixed duty cycle
- Each node wakes up for a fixed or adaptive period and sleeps for the remaining time
- The CAPM achieves 80% energy saving while PSM in Hierarchical power management scheme saves 40%

Background

- Mobility Models
- Power Management of Disruption Tolerant Networks
- 2 Multi-Radio Power Management Scheme for DTNs
 - Performance Evaluation of the MR Power management Scheme
 - Impact of Different Mobility Models on the MR Power management Scheme

3 Summary, Conclusions and Future Directions

Multi-Radio Power Management Scheme for DTNs

Multi-Radio combines concepts of on-demand and asynchronous schemes by using

- Low-power radio (LPR) interface to search for neighbors
- High-power radio (HPR) interface that is woken on-demand to exchange data

Power usage of low and high power radios (in Watt)

Radio	Tx	Rx	Idle	Sleep	Bit Rate
WaveLan	1.3272	0.9670	0.8437	0.0664	2 Mbps
XTend	1	0.36	0.36	0.01	115.2 Kbps

Neighbor Discovery and Data Delivery

• Each node periodically wakes up for a period *W* in a fixed duty cycle of length *C*

Nodes wakeup order : node 1, node 2, node 3

Multiple possible neighbor discovery scenarios

Simulation Setup

Simulation Scenarios

- Each scenario is set up with 40 nodes, distributed over
 - $1000 \times 1000 \text{ m}^2$
 - 1400 \times 1400 m^2
 - $3000 \times 3000 \text{ m}^2$

Traffic Model

- We use constant bit rate traffic with 10 CBR flows and a packet size of 512 bytes.
- The traffic generation for each flow varied from 0.25 pkts/s to 3 pkts/s.
- Only a maximum of 10 connections are allowed during each run.

 $1150 \times 1150 \text{ m}^2$

 $2000 \times 2000 \text{ m}^2$

Evaluation Metrics

1 Normalized Energy Consumption (NEC):

The ratio of the energy consumption when multi-radio scheme is applied divided by the energy consumption in the absence of energy conservation

2 Delivery Ratio:

The ratio of the number of the successfully received data packets divided by the number of the data packets sent

Average End-to-End Delay:

The average delay it takes to deliver a data packet from the source to the destination

Evaluation Metrics

1 Normalized Energy Consumption (NEC):

The ratio of the energy consumption when multi-radio scheme is applied divided by the energy consumption in the absence of energy conservation

Delivery Ratio:

The ratio of the number of the successfully received data packets divided by the number of the data packets sent

Average End-to-End Delay:

The average delay it takes to deliver a data packet from the source to the destination

Evaluation Metrics

1 Normalized Energy Consumption (NEC):

The ratio of the energy consumption when multi-radio scheme is applied divided by the energy consumption in the absence of energy conservation

Delivery Ratio:

The ratio of the number of the successfully received data packets divided by the number of the data packets sent

3 Average End-to-End Delay:

The average delay it takes to deliver a data packet from the source to the destination

Impact of Node Density on Delivery Ratio of the MR using RWP

Impact of Node Density on Average Delay using RWP

Impact of Node Density on Normalized Energy Consumption using RWP

Impact of Varying Node Density and Traffic Load on the Delivery Ratio for Different Mobility Models

Iyad Tumar

Impact of Varying Node Density and Traffic Load on the Average Delay for Different Mobility Models

Iyad Tumar

Impact of Varying Node Density and Traffic Load on the NEC for Different Mobility Models

Iyad Tumar

Energy saving of different mobility models at low data rate (0.25 pkt/s)

Mobility Model	SR Eng. Saving	MR Eng. Saving	Delta
RWP	85%	90%	5%
MF	86%	93%	7%
Zebra	85%	91%	6%
Manhattan	84%	89%	5%
Orlando	77%	87%	10%

Energy saving of different mobility models at high data rate (3 pkt/s)

Mobility Model	SR Eng. Saving	MR Eng. Saving	Delta
RWP	73%	88%	15%
MF	76%	90%	14%
Zebra	73%	89%	16%
Manhattan	72%	86%	14%
Orlando	67%	84%	17%

Background

- Mobility Models
- Power Management of Disruption Tolerant Networks
- 2 Multi-Radio Power Management Scheme for DTNs
 - Performance Evaluation of the MR Power management Scheme
 - Impact of Different Mobility Models on the MR Power management Scheme

Summary, Conclusions and Future Directions

Summary and Conclusion

Summary

- We designed a MR power management scheme for DTNs
- The MR uses two complementary radios: a low-power radio for neighbor discovery and a high-power radio to undertake the data transmission
- We evaluated the MR scheme with different mobility models and we compared it with a single radio scheme (CAPM)

Conclusion

- The MR scheme is adaptive to different mobility models
- The MR scheme can achieve almost the same delivery ratio compared to the single radio power management scheme

Summary and Conclusion

Summary

- We designed a MR power management scheme for DTNs
- The MR uses two complementary radios: a low-power radio for neighbor discovery and a high-power radio to undertake the data transmission
- We evaluated the MR scheme with different mobility models and we compared it with a single radio scheme (CAPM)

Conclusion

- The MR scheme is adaptive to different mobility models
- The MR scheme can achieve almost the same delivery ratio compared to the single radio power management scheme

Future Directions

Routing Protocols

• It would be interesting to study the behavior of the MR scheme with other routing protocols such as MaxProp

Traffic Models

• It would be interesting to evaluate the MR power management scheme with different traffic models

Adaptive Radios

• To explore adaptive radios for energy saving techniques in disruption tolerant networks

Future Directions

Routing Protocols

 It would be interesting to study the behavior of the MR scheme with other routing protocols such as MaxProp

Traffic Models

• It would be interesting to evaluate the MR power management scheme with different traffic models

Adaptive Radios

• To explore adaptive radios for energy saving techniques in disruption tolerant networks

Future Directions

Routing Protocols

 It would be interesting to study the behavior of the MR scheme with other routing protocols such as MaxProp

Traffic Models

• It would be interesting to evaluate the MR power management scheme with different traffic models

Adaptive Radios

 To explore adaptive radios for energy saving techniques in disruption tolerant networks

Questions???

< ∃ →