
NFQL: A Tool for Querying Network Flow Records

Computer Networks and Distributed Systems
Jacobs University Bremen

Bremen, Germany

May 2013

IM 2013, Ghent

Vaibhav Bajpai, Johannes Schauer and Jürgen Schönwälder

This work was partly funded by Flamingo, a Network of Excellence project (ICT-318488) supported by the European Commission under its Seventh Framework Programme.

{v.bajpai, j.schauer, j.schoenwaelder}@jacobs-university.de

nfql.vaibhavbajpai.com

http://nfql.vaibhavbajpai.com
http://nfql.vaibhavbajpai.com

• Motivation

• Related Work

• Flow Query Language: NFQL

• Implementation: nfql

• Performance Evaluations

• Conclusions

Overview

Motivation

• Flow export protocols

• IP traffic flow

Flow analysis use cases:

A set of IP packets passing an observation point in the network
during a certain time interval. All packets belonging to a
particular flow have a set of common properties [RFC 3917].

• Cisco NetFlow [RFC 3954]
• IETF IPFIX [RFC 5101]

• Survey on detection of intrusion attacks [1].
• Survey on behavior analysis of Internet backbone traffic [2].

• Understanding intricate traffic patterns require sophisticated flow analysis tools.
• Current tools span a smaller use-case owing to their simplistic language designs. [3/11]

Version Features

v1, {2, 3, 4} original format with several internal releases

v5 CIDR, AS support and flow sequence numbers

v{6, 7, 8} router-based aggregation support

v9 template-based with IPv6 and MPLS support

IPFIX universal standard, transport-protocol agnostic

Related Work

• Popular NetFlow analysis tools

• flow-tools: supports NetFlow v5
• nfdump: supports NetFlow v9

• Simple traffic analysis tools

• ntop, FlowScan, NfSen, Stager

• Popular IPFIX analysis tools

• SiLK

• Limited to only absolute comparison of flow-keys

• Grouping and merging can only be performed on = operator.
• Cannot ungroup the flows once grouped.
• Stringent requirements on organization of input flows.

[4/11]

NFQL (Network Flow Query Language)

• Features

• Filter flows.
• Combine flows into groups.
• Aggregate flows on flow-keys as one grouped flow aggregate.
• Invoke Allen interval algebra on flows.
• Merge grouped flows.
• Apply absolute or relative filters when grouping or merging.
• Unfold grouped flows back into individual flows.

The expressiveness of the
language can be seen from
[4], where NFQL queries
a re u sed to i den t i f y
application signatures.

NFQL processing pipeline [3]

[5/11]

nfql Tool

• The input and output traces
are in NetFlow v5 format.

Execution Engine

Front-End Parser

JSON

Output Trace

nfql

NFQL Query

Input Trace

• JSON intermediate format

• Each pipeline stage of the JSON query is a DNF expression.
• JSON query can disable the pipeline stages at RUNTIME.
• Execution engine uses json-c to parse the JSON query.

nfql architecture

• Execution engine is written in C.

• Parser is written in Python.

[6/11]

nfql Tool

• Execution workflow

• A custom C library has been written to read/write traces in flow-tools format.
• Flows are read in memory and indexed to allow retrieval in O(1) time.
• Each branch is run in separate thread.

• Performance optimizations

• No splitter: Using indexes to reference flows in each branch.
• Inline filter: Flows are filtered as soon as they are read in memory.
• Faster grouper lookups: Sort on group keys and perform a nested binary search.
• Faster merger matches: Sort on merger keys to skip iterator permutations.

Filter (worst case) O(n) where n=num(flows)

Grouper (average case) O(n × lg(k)) + O(p × n × lg(n)) where k=num(unique(flows)), p=num(terms)

Grouper aggregations (worst case) O(n)

Group Filter (worst case) O(g) where g=num(groups)

Merger (worst case) O(g^m) where m=num(branches)

Ungrouper (worst case) O(g)

nfql Tool

• Each compression level adds its own
performance overhead when writing output
traces to files.

• Additional Features

• Each pipeline stage results can be written out as flow-tools files.
• Capability to read multiple input traces from stdin:

• Output traces are compressed using zlib
library. nfdump uses lzo compression.

• Compression level is configurable at
RUNTIME. nfql uses ZLIB_LEVEL 5 by
default.

$ flow-cat $TRACES | nfql $QUERY - [8/11]

Demo

branch A {

 filter f1 {
 dstport=80
 protocol=TCP
 }

 grouper g1 {
 srcaddr = srcaddr
 dstaddr = dstaddr
 aggregation {
 sum(dPkts)
 sum(dOctets)
 }
 }

 groupfilter gf1 {
dPkts > 200

}
}

branch B {

 filter f1 {
 srcport=80
 protocol=TCP
 }

 grouper g1 {
 srcaddr = srcaddr
 dstaddr = dstaddr
 aggregation {
 sum(dPkts)
 sum(dOctets)
 }
 }

 groupfilter gf1 {
dPkts > 200

}
}

merger M {
 A.srcaddr = B.dstaddr
 A.dstaddr = B.srcaddr
}

Thread A Thread B

ungrouper U {

}

Performance Evaluations

• Ran on a machine with 24 cores, 2.5 GHz
clock speed and 18 MiB of physical memory.

• Stressing the rest of the pipeline stages (please refer to the paper)
• flow-tools and nfdump do not have the equivalent functionality to participate.
• SiLK does not have equivalent Ungrouper functionality.

• Used first 20M flows from Trace 7 in the
SimpleWeb repository [5].

• Input trace was compressed at ZLIB_LEVEL 5.

• nfdump uses lzo compression to trade
output trace size with RUNTIME speed.

[10/11]

Conclusion

• NFQL’ richer language capabilities allow sophisticated flow queries.

• nfql can process such complex queries in minutes.

• nfql has comparable execution times when processing real-world traces.

• nfql has expanded the scope of current flow-processing tools.

• Evaluation queries developed as part of this research can become input towards a
generic benchmarking suite for flow-processing tools.

nfql.vaibhavbajpai.com
[11/11]

http://nfql.vaibhavbajpai.com
http://nfql.vaibhavbajpai.com

References

[1] A. Sperotto, et al., An overview of IP flow-based intrusion detection, IEEE

[2] A. Callado, et al., A survey on Internet traffic identification, IEEE

[3] V. Marinov, et al., Design of a stream-based IP Flow Record Query Language,

[4] V. Perelman, et al., Flow Signatures of Popular Applications,

[5] R. Barbosa, et al., Simpleweb/University of Twente Traffic Traces Data Repository,

Communication Surveys and Tutorials, 2010.

Communication Surveys and Tutorials, 2009.

Distributed Systems: Operations & Management, 2009

Symposium on Integrated Network Management, 2011

http://www.simpleweb.org/wiki/Traces [Last Accessed: May 25, 2013]

http://www.simpleweb.org/wiki/Traces
http://www.simpleweb.org/wiki/Traces

