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Motivation

•  Flow export protocols

•  IP traffic flow

Flow analysis use cases:

A set of IP packets passing an observation point in the network 
during a certain time interval. All packets belonging to a 
particular flow have a set of common properties [RFC 3917].

• Cisco NetFlow [RFC 3954]
• IETF IPFIX [RFC 5101]

• Survey on detection of intrusion attacks [1].
• Survey on behavior analysis of Internet backbone traffic [2].

• Understanding intricate traffic patterns require sophisticated flow analysis tools.
• Current tools span a smaller use-case owing to their simplistic language designs. [3/11]

Version Features

v1, {2, 3, 4} original format with several internal releases

v5 CIDR, AS support and flow sequence numbers

v{6, 7, 8} router-based aggregation support

v9 template-based with IPv6 and MPLS support

IPFIX universal standard, transport-protocol agnostic



Related Work

• Popular NetFlow analysis tools

• flow-tools: supports NetFlow v5
• nfdump: supports NetFlow v9

• Simple traffic analysis tools

• ntop, FlowScan, NfSen, Stager

• Popular IPFIX analysis tools

• SiLK

•  Limited to only absolute comparison of flow-keys

•  Grouping and merging can only be performed on = operator.
•  Cannot ungroup the flows once grouped.
•  Stringent requirements on organization of input flows.

[4/11]



NFQL (Network Flow Query Language)

• Features

• Filter flows.
• Combine flows into groups.
• Aggregate flows on flow-keys as one grouped flow aggregate.
• Invoke Allen interval algebra on flows.
• Merge grouped flows.
• Apply absolute or relative filters when grouping or merging.
• Unfold grouped flows back into individual flows.

The expressiveness of the 
language can be seen from 
[4], where NFQL queries 
a re u sed to i den t i f y 
application signatures.

NFQL processing pipeline [3]
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nfql Tool

• The input and output traces 
are in NetFlow v5 format.

Execution Engine

Front-End Parser

JSON

Output Trace

nfql

NFQL Query

Input Trace

• JSON intermediate format

• Each pipeline stage of the JSON query is a DNF expression.
• JSON query can disable the pipeline stages at RUNTIME.
• Execution engine uses json-c to parse the JSON query.

nfql architecture

• Execution engine is written in C.

• Parser is written in Python.
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nfql Tool

• Execution workflow

• A custom C library has been written to read/write traces in flow-tools format.
• Flows are read in memory and indexed to allow retrieval in O(1) time.
• Each branch is run in separate thread. 

• Performance optimizations

• No splitter:  Using indexes to reference flows in each branch.
• Inline filter:  Flows are filtered as soon as they are read in memory.
• Faster grouper lookups: Sort on group keys and perform a nested binary search.
• Faster merger matches: Sort on merger keys to skip iterator permutations.

Filter (worst case)  O(n) where n=num(flows)

Grouper (average case)  O(n × lg(k)) + O(p × n × lg(n)) where k=num(unique(flows)), p=num(terms)

Grouper aggregations (worst case)  O(n)

Group Filter (worst case)  O(g) where g=num(groups)

Merger (worst case)  O(g^m) where m=num(branches)

Ungrouper (worst case)  O(g)



nfql Tool

• Each compression level adds its own 
performance overhead when writing output 
traces to files.

• Additional Features

• Each pipeline stage results can be written out as flow-tools files.
• Capability to read multiple input traces from stdin:

• Output traces are compressed using zlib 
library.  nfdump uses lzo compression.

• Compression level is configurable at 
RUNTIME. nfql uses ZLIB_LEVEL 5 by 
default.

$ flow-cat $TRACES | nfql $QUERY - [8/11]



Demo

branch A {

  filter f1 {
    dstport=80
    protocol=TCP
  }

  grouper g1 {
    srcaddr = srcaddr
    dstaddr = dstaddr
    aggregation {
      sum(dPkts)
      sum(dOctets)
    }
  }

  groupfilter gf1 {
dPkts > 200

}
}

branch B {

  filter f1 {
    srcport=80
    protocol=TCP
  }

  grouper g1 {
    srcaddr = srcaddr
    dstaddr = dstaddr
    aggregation {
      sum(dPkts)
      sum(dOctets)
    }
  }

  groupfilter gf1 {
dPkts > 200

}
}

merger M {
  A.srcaddr = B.dstaddr
  A.dstaddr = B.srcaddr
}

Thread A Thread B

ungrouper U {

}



Performance Evaluations

• Ran on a machine with 24 cores, 2.5 GHz 
clock speed and 18 MiB of physical memory.

• Stressing the rest of the pipeline stages (please refer to the paper)
• flow-tools and nfdump do not have the equivalent functionality to participate.
• SiLK does not have equivalent Ungrouper functionality.

• Used first 20M flows from Trace 7 in the 
SimpleWeb repository [5].

• Input trace was compressed at ZLIB_LEVEL 5.

• nfdump uses lzo compression to trade 
output trace size with RUNTIME speed.
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Conclusion

• NFQL’ richer language capabilities allow sophisticated flow queries.

• nfql can process such complex queries in minutes.

• nfql has comparable execution times when processing real-world traces.

• nfql has expanded the scope of current flow-processing tools.

• Evaluation queries developed as part of this research can become input towards a 
generic benchmarking suite for flow-processing tools.

nfql.vaibhavbajpai.com
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