Introduction to Computer Science


  • Course: Introduction to Computer Science (CH08-320101)
  • Semester: Fall 2017
  • Instructor: Jürgen Schönwälder
  • TA: Abreu, Steven
  • TA: Granderath, Malte Aaron
  • TA: Hambasan, Alexandru
  • TA: Maiereanu, Tudor Cristian
  • TA: Shrestha, Mohit
  • TA: Tarigradschi, Mihail
  • Class: Tuesday, 08:15-09:30, Lecture Hall Research II
  • Class: Tuesday, 09:45-11:00, Lecture Hall Research II
  • Class: Thursday, 11:15-12:30, Lecture Hall Research II


The course covers the fundamental concepts and techniques of computer science in a bottom-up manner. Based on clear mathematical foundations (which are developed as needed) the course discusses abstract and concrete notions of computing machines, information, and algorithms, focusing on the question of representation versus meaning in Computer Science.

To develop a theoretical notion of computation, we introduce basic concepts of discrete mathematics with a focus on inductively defined structures. The functional programming language Haskell will be introduced and used as the primary programming language for the course. We cover a basic subset of Haskell that includes types, recursion, tuples, lists, strings, and higher-order functions. Back on the theoretical side, we cover the syntax and semantics of Boolean expressions and we explain how Boolean algebra relates to logic gates and digital circuits. On the technical side, we introduce the representation of basic data types such as numbers, characters, strings and dates as well as the basics of computer architecture and assembly programming. On the algorithmic side, the course introduces the notion of correctness and elementary complexity theory (big-O notation) and we introduce abstract data types.


  • Uwe Schöning, "Logic for Computer Scientists", Birkhäuser, 1989
  • Eric Lehmann, F. Thomson Leighton, Albert R. Meyer, "Mathematics for Computer Science", 2018



Tu 08:15 Th 11:15 Topics
2017-09-05 2017-09-07 Introduction and maze generation algorithms
2017-09-12 2017-09-14 String search algorithms, complexity and correctness
2017-09-19 2017-09-21 Mathematical notations and proof techniques
2017-09-26 2017-09-28 Sets, relations, and functions
2017-10-03 2017-10-05 Representation of integer and floating point numbers
2017-10-10 2017-10-12 Representation of characters, strings, date and time
2017-10-17 2017-10-19 Boolean operations and expressions
2017-10-24 2017-10-26 Boolean algebra and normal forms
2017-10-31 2017-11-02 Boolean expression minimization and Boolean logic
2017-11-07 2017-11-09 Logic gates, basic digital circuits, von Neuman computer architecture
2017-11-14 2017-11-16 Assembly programming, interpreter, compiler
2017-11-21 2017-11-23 Operating systems, processes, file systems, communication
2017-11-28 2017-11-30 Finite state machines, pushdown automata and turing machines, formal languages
2017-12-05 2017-12-07 Computability theory and complexity theory


Tu 09:45 Topics
2017-09-12 Haskell Tutorial (Alexandru)
2017-09-19 Shell Tutorial (Steven)
2017-09-26 Haskell Tutorial (Alexandru)
2017-10-10 Lecture (moved from 2017-10-05)
2017-10-17 Haskell Tutorial (Alexandru)
2017-10-24 Grand Tutorial
2017-11-14 Haskell Tutorial (Alexandru)
2017-11-21 Haskell Tutorial (Alexandru)
2017-12-05 Grand Tutorial


Date/Due Name Topics
2017-09-12 Quiz #1 administrivia, mazes, kruskal's algorithm
2017-09-19 Quiz #2 complexity, correctness, software engineering, mathematical notation
2017-09-19 Sheet #1 boyer moore bad character rule, haskell factorial
2017-09-26 Quiz #3 proof techniques
2017-09-26 Sheet #2 proof by contrapositive and by induction
2017-10-03 Sheet #3 sets and relations
2017-10-10 Quiz #4 relations, functions, recursion
2017-10-10 Sheet #4 order relations, function composition
2017-10-17 Quiz #5 units, prefixes, characters, date and time
2017-10-17 Sheet #5 number systems, floating point numbers
2017-10-24 Quiz #6 boolean algebra and logic
2017-10-26 Midterm Exam Eastwing
2017-10-31 Sheet #6 boolean expressions, tower of hanoi
2017-11-07 Quiz #7 normal forms, complexity of boolean functions, quine-mccluskey
2017-11-07 Sheet #7 quine-mccluskey algorithm
2017-11-14 Quiz #8 von Neumann computer architecture
2017-11-14 Sheet #8 half and full adder, ripple carry adder and carry lookahead adder
2017-11-21 Quiz #9 assembly programming, interpreter, compiler
2017-11-21 Sheet #9 assembly programming
2017-11-28 Quiz #10 operating systems
2017-11-28 Sheet #10 fold functions, processes
2017-12-05 Quiz #11 automata (bonus)
2017-12-05 Sheet #11 automata and formal languages (bonus)
2017-12-16 Final Exam 09:00-11:00 East Wing (closed book)
2018-02-10 Makeup Final Exam 14:00-16:00 CS Lecture Hall (closed book)


The final grade is made up of the final exam (30%), quizzes (30%), the midterm exam (20%) and homework assignments (20%).

Electronic submission is the preferred way to hand in homework solutions. Please submit documents (plain ASCII text or PDF, no Word) and your source code (tar, zip) via the online submission system. If you have problems, please contact one of the TAs.

Late submissions will not be accepted. Homeworks may need to be defended in an oral interview.

For any questions stated on assignment sheets, quiz sheets, exam sheets or during makeups, we by default expect a reasoning for the answer given, unless explicitely stated otherwise.

Students must submit solutions individually. If you copy material verbatim from the Internet (or other sources), you have to provide a proper reference. If we find your solution text on the Internet without a proper reference, you risk to lose your points. Any cheating cases will be reported to the registrar. In addition, you will lose the points (of course).

Any programs, which have to be written, will be evaluated based on the following criteria:

  • correctness including proper handling of error conditions
  • proper use of programming language constructs
  • clarity of the program organization and design
  • readability of the source code and any output produced

Source code must be accompanied by a README file providing an overview of the source files and giving instructions how to build the programs. A suitable Makefile is required if the build process involves more than a single source file.

If you are unhappy with the grading, please report immediately (within one week) to the TAs. If you can't resolve things, contact the instructor. Problem reports which come late, that is after the one week period, are not considered anymore.

The policy on makeup quizzes is the following: There won't be any quiz makeups. If you (a) get an official excuse for a quiz from the registrar's office or (b) approach we well in advance of the quiz with a very good reason for not being able to participate (e.g., because you take a GRE computer science subject test at the day of a quiz), then the weight of the final exam will be increased according to the weight of the quiz you got excused for.